[1] س. م. ا. خاتمی, زیباییهای مثلث خیام-پاسکال, {\em ریاضی و جامعه}, 5 no. 2 (1399) 75--92.
[2] م. میرزاوزیری، شمردنیها را بشمار، آهنگ قلم، 1390.
[3] ع. ثابتیان، مثلث خیام-پاسکال و گونه ای تعمیم آن, رشد آموزش ریاضی, 42 (1374) 54--57.
[4] ج. بهبودیان، م. بیات، و ح. تیموری فعال، مثلث عددی خیام-پاسکال و مثلثهای شبیه آن، انتشارات علمی دانشگاه صنعتی شریف، 1385.
[5] J. L. Coolidge, The story of the binomial theorem, Amer. Math. Monthly, 56 (1949) 147–157.
[6] R. Rashed, The development of Arabic mathematics: between arithmetic and algebra, (Translated from the 1984 French
original by A. F. W. Armstrong), 156, Kluwer Academic Publishers, Dordrecht, 1994.
[7] N. A. Draim and M. Bicknell, Sums of n-th powers of roots of a given quadratic equation, Fibonacci Quart., 4 (1966)
170–178.
[8] M. Senn, (1,2)-Pascal triangle - OeisWiki, 2016.
[9] H. Belbachir, A. Mehdaoui and L. Szalay, Diagonal sums in Pascal pyramid, J. Combin. Theory Ser. A, 165 (2019) 106–116.
[10] G. E. Andrews, Euler’s “exemplum memorabile inductionis fallacis” and q-trinomial coefficients, J. Amer. Math. Soc., 3 (1990) 653–669.
[11] T. Mansour and M. Schork, Commutation relations, normal ordering, and Stirling numbers, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2016.
[12] R. L. Graham, D. E. Knuth and O. Patashnik. Concrete mathematics. A foundation for computer science, Second edition. Addison-Wesley Publishing Company, Reading, MA, 1994.
[13] S. Daboul, J. Mangaldan, M. Z. Spivey and P. J. Taylor, The Lah numbers and the $n$th derivative of $e^{1/x}$, Math. Mag., 86 (2013) 39–47.
[14] T. Kyle Petersen, Eulerian numbers, Birkhäuser Advanced Texts, Birkhäuser/Springer, New York, 2015.
[15] D. F. Bailey, Counting Arrangements of 1’s and -1’s, Math. Mag., 69 (1996) 128–131.
[16] H. S. Wilf, generatingfunctionology, Third edition. A. K. Peters, Ltd., Wellesley, MA, 2006.
[17] W. Eplett, A note about the catalan triangle, Discrete Math., 25 (1979) 289–291.
[18] N. Dershowitz and S. Zaks, Ordered trees and noncrossing partitions, Discrete math., 62 (1986) 215–218.
[19] E. Miller and V. Reiner, Geometric combinatorics, AMS, 2007.
[20] W. Lang, Triangle of coefficients of Chebyshev’s $T(n,x)$ polynomials (powers of x in increasing order), OeisWiki, 2013.
[21] A. Macdougall, A Pascal-like Triangle for Coefficients of Chebyshev Polynomials, The Mathematical Gazette, 83 (1999) 276–280.
[22] G. Dobinski, Summirung der reihe $\sum\frac{n^m}{m!}$ fur $m=1, 2, 3, 4, 5,\ldots$, Grunert’s Archiv, 61 (1877) 333–336.
[23] C. S. Peirce, On the algebra of logic, Amer. J. Math., 3 (1880) 15–57.
[24] A. C. Aitken, A problem in combinations, Edinburgh Mathematical Notes, 28 (1933) xviii-xxiii.
[25] J. H. Conway and R. K. Guy. The book of numbers, Copernicus, New York, 1996.