جاذب‌های پیوسته در سیستم رابینوویچ-فابریکانت و مدل تعمیم‌یافته جدید آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه ریاضی، دانشگاه پیام نور، صندوق پستی ۱۹۳۹۵-۳۶۹۷ ، تهران، ایران

2 گروه علوم کامپیوتر، دانشگاه صنعتی بیرجند، بیرجند، ایران

چکیده

هدف از این کار، مطالعه عددی سامانه‌ی رابینوویچ-فابریکانت و مدل تعمیم‌یافتۀ آن است که وقوع رفتارهای پویای بسیار غنی و پیچیده را با برهم‌کنش سه پارامتر سامانه‌ی تعمیم‌یافته، نشان می‌دهد. به‌ویژه، پدیده انشعاب مضاعف‌سازی دوره تناوب منتهی به آشوب را مشاهده می‌کنیم که در کارهای قبلی به‌ندرت در سامانه‌ی رابینوویچ-فابریکانت گزارش شده‌اند. رفتارهای پیچیده پویای سامانه با استفاده از طیف نمای لیاپانوف، نمودار انشعاب وابسته به پارامترها و مقاطع مختلف از فضای فاز بررسی می‌شوند. این مطالعه بر‌اساس حل عددی معادلات دیفرانسیل و تجزیه و تحلیل انشعاب عددی آن‌ها با استفاده از نرم‌افزار متلب است. نتایج به‌دست آمده جدید هستند، زیرا تعمیم مطالعه حاضر از سامانه‌ی رابینوویچ-فابریکانت، برای اولین‌بار است که مطرح گردیده و مورد بررسی قرار گرفته است. مدل تعمیم‌یافته، تعامل سه حالت را توصیف می‌کند و می‌تواند برای شبیه‌سازی سامانه‌هایی در مهندسی رادیو و الکترونیک که در آن‌ها یک تعامل سه‌حالته وجود دارد و شامل جملات غیر‌خطی مرتبه سه هستند، مورد استفاده قرار گیرد. به‌علاوه، هر چند سامانه‌های رابینوویچ-فابریکانت، سامانه‌هایی با ماهیت فیزیکی را شبیه‌سازی می‌کنند و لذا، ضرایب تعبیه‌شده در آن‌ها باید مثبت باشند، اما ماهیت به‌شدت غیر‌خطی و آشوبناک آن‌ها، به‌دلیل وجود جملات مرتبه سوم، کاربرد آن‌ها را در ارتباطات ایمن از اهمیت خاصی برخوردار کرده و به‌همین علت، تعمیم مصنوعی آن با استفاده از پارامترهای منفی، که بر پیچیدگی پویای غنی آن می‌افزاید، بسیار قابل‌توجه است.

کلیدواژه‌ها


[1] S. P. Kuznetsov and L. V. Turukina, Generalized Rabinovich–Fabrikant system: equations and its dynamics, Izvestiya VUZ. Applied Nonlinear Dynamics, 30 no. 1 (2022) 7–29.
[2] L. V. Turukina, Dynamics of the Rabinovich-Fabrikant system and its generalized model in the case of negative values of parameters that have the meaning of dissipation coefficients, Izvestiya VUZ. Applied Nonlinear Dynamics, 30 no. 6 (2022) 685–701.
[3] H. J. Yakubu, E. G. Dada, S. B. Joseph and A. K. Anukem, A new chaotic image encryption algorithm for digital colour images using rabinovich-fabrikant equations, International Journal of Computer Science and Information Security (IJCSIS), 17 no. 1 (2019) 15–23.
[4] A. Alghafis, N. Munir and M. Khan, An encryption scheme based on chaotic Rabinovich-Fabrikant system and S 8 confusion component, Multimed. Tool. Appl., 80 (2019) 7967–7985.
[5] A. Javeed, T. Shah and M. Attaullah, Design of an S-box using Rabinovich-Fabrikant system of differential equations perceiving third order nonlinearity, Multimed. Tool. Appl., 79 (2020) 6649–6660.
[6] S. H. Strogatz, Nonlinear Dynamics and Chaos, Addison-Wesley Publishing Company, Reading, MA, 1994.
[7] J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57 no. 3 (1985) 617–630.
[8] J. D. Farmer, E. Ott and J. A. Yorke, The dimension of chaotic attractors, Physica D: Nonlinear Phenomena, 7 no. 1-3 (1983) 153–180.
[9] V. I. Oseledets, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskovskogo Matematicheskogo Obshchestva, Trans. Moscow Math. Soc., 19 (1968) 197–231.
[10] A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D: nonlinear phenomena, 16 no. 3 (1985) 285–317.
[11] V. G. Ivancevic and T. T. Ivancevic, High-dimensional chaotic and attractor systems: a comprehensive introduction, Springer Science & Business Media, 2007.
[12] M. Klein and G. Baier, Hierarchies of dynamical systems, A chaotic hierarchy, World Sci. Publ., Teaneck, NJ, 1991 1–23.
[13] D. J. Evans, E. G. D. Cohen, D. J. Searles and F. Bonetto, Note on the Kaplan–Yorke dimension and linear transport coefficients, J. Statist. Phys., 101 no. 1-2 (2000) 17–34.
[14] P. Frederickson, J. L. Kaplan, E. D. Yorke and J. A. Yorke, The Liapunov dimension of strange attractors, J. Differential Equations, 49 no. 2 (1983) 185–207.
[15] L. S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems, 2 no. 1 (1982)  109–124.
[16] F. Ledrappier and L. S. Young, Dimension formula for random transformations, Comm. Math. Phys., 117 no. 4 (1988) 529–548.
[17] H. Haken, At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point, Phys. Lett. A, 94 no. 2 (1983) 71–72.
[18] M. Sandri, Numerical calculation of Lyapunov exponents, Mathematica Journal, 6 no. 3 (1996) 78–84.
[19] M. Klein and G. Baier, Hierachies of dynamical systems, In A Chaotic Hierarchy, edited by G. Baier and M. Klein, World Scientfic: Singapore, 1991.
[20] Q. Yang, Z. Wei and G. Chen, An unusual 3D autonomous quadratic chaotic system with two stable node-foci, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 no. 4 (2010) 1061–1083.
[21] D. Dudkowski, S. Jafari, T. Kapitaniak, N. V. Kuznetsov, G. A. Leonov and A. Prasad, Hidden attractors in dynamical systems, Phys. Rep., 637 (2016) 1–50.
[22] B. Munmuangsaen and B. Srisuchinwong, A hidden chaotic attractor in the classical Lorenz system, Chaos Solitons Fractals, 107 (2018) 61–66.
[23] N. V. Kuznetsov and G. A. Leonov, Hidden attractors in dynamical systems: systems with no equilibria, multistability and coexisting attractors, IFAC Proceedings Volumes, 47 no. 3 (2014) 5445–5454.
[24] N. V. Kuznetsov, Hidden attractors in fundamental problems and engineering models: A short survey, In AETA 2015: Recent Advances in Electrical Engineering and Related Sciences, (2016) 13–25.
[25] J. P. Singh and B. K. Roy, The simplest 4-D chaotic system with line of equilibria, chaotic 2-torus and 3-torus behaviour, Nonlinear Dynam., 89 no. 3 (2017) 1845–1862.
[26] H. Natiq, M. R. M. Said, M. R. K. Ariffin, S. He, L. Rondoni and S. Banerjee, Self-excited and hidden attractors in a novel chaotic system with complicated multistability, The Europ. Phys. J. Plus, 133 no. 557 (2018) 1–12.
[27] A. N. Pisarchik and U. Feudel, Control of multistability, Phys. Rep., 540 no. 4 (2014) 167–218.
[28] F. T. Arecchi, R. Meucci, G. Puccioni and J. Tredicce, Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser, Phys. Rev. Lett., 49 no. 17 (1982).
[29] J. C. Sprott, X. Wang and G. Chen, Coexistence of point, periodic and strange attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 no. 5 (2013) 5 pp.
[30] C. Li and J. C. Sprott, Multistability in the Lorenz system: a broken butterfly, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 no. 10 (2014) 7 pp.
[31] J. Kengne, Z. T. Njitacke and H. B. Fotsin, Dynamical analysis of a simple autonomous jerk system with multiple attractors, Nonlinear Dynam., 83 no. 1-2 (2016) 751–765.
[32] G. Wang, F. Yuan, G. Chen and Y. Zhang, Coexisting multiple attractors and riddled basins of a memristive system, Chaos: An Interdisciplinary Journal of Nonlinear Science, 28 no. 1 (2018) 11 pp.
[33] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci., 20 no. 2 (1963) 130–141.
[34] S. Banerjee, S. K. Palit, S. Mukherjee, M. R. K. Ariffin and L. Rondoni, Complexity in congestive heart failure: A time-frequency approach, Chaos: An Interdisciplinary Journal of Nonlinear Science, 26 no. 3 (2016) 10 pp.
[35] L. Rondoni, M. R. K. Ariffin, R. Varatharajoo, S. Mukherjee, S. K. Palit and S. Banerjee, Optical complexity in external cavity semiconductor laser, Opt. Commun., 387 (2017) 257–266.
[36] S. J. S. Theesar, S. Banerjee and P. Balasubramaniam, Synchronization of chaotic systems under sampleddata control, Nonlinear Dynam., 70 no. 3 (2012) 1977–1987.
[37] P. Saha, S. Banerjee and A. R. Chowdhury, Chaos, signal communication and parameter estimation, Phys. Lett. A, 326 no. 1-2 (2004) 133–139.
[38] M. F. Danca and N. Kuznetsov, Hidden strange nonchaotic attractors, Mathematics, 9 no. 6 (2021).
[39] S. P. Kuznetsovand L. V. Turukina, Generalized Rabinovich-Fabrikant system: equations and its dynamics, Izvestiya VUZ. Applied Nonlinear Dynamics, 30 no. 1 (2022) 7–29.
[40] M. F. Danca, A multistep algorithm for ODEs, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 13 no. 6 (2006) 803–821.
[41] M. F. Danca, Hidden transient chaotic attractors of Rabinovich–Fabrikant system, Nonlinear Dynam., 86 no. 2 (2016) 1263–1270.
[42] M. F. Danca, M. Feckan, N. Kuznetsov and G. Chen, Looking more closely at the Rabinovich–Fabrikant system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 no. 2 (2016) 21 pp.
[43] M. I. Rabinovich and A. L. Fabrikant, Stochastic self-modulation of waves in nonequilibrium media, J. Exp. Theor. Phys., 77 (1979) 617–629.
[44] S. Ullah, X. Liu, A. Waheed and S. Zhang, An efficient construction of S-box based on the fractional-order Rabinovich–Fabrikant chaotic system, Integration, the VLSI Journal, 94 (2024).
[45] A. Javeed, T. Shah and M. Attaullah, Design of an S-box using Rabinovich-Fabrikant system of differential equations perceiving third order nonlinearity, Multimed. Tool. Appl., 79 (2020) 6649–6660.
[46] H. J. Yakubu, E. G. Dada, S. B. Joseph and A. K. Anukem, A new chaotic image encryption algorithm for digital colour images using rabinovich-fabrikant equations, International Journal of Computer Science and Information Security (IJCSIS), 17 no. 1 (2019) 15–23.
[47] A. Alghafis, N. Munir and M. Khan, An encryption scheme based on chaotic Rabinovich-Fabrikant system and S 8 confusion component, Multimed. Tool. Appl., 80 (2021) 7967–7985.
[48] A. Andronov and A. L. Fabrikant, Nelineinye Volny (Nonlinear Waves) ed Executive Ed AV Gaponov–Grekhov, (1979) 68.
[49] م. دلخوش، معرفی فرکتال‌ها و بعدهای کسری، ریاضی و جامعه, 2 شماره 1 (1396) 1--23.
[50] ا. زارعی زفره، الگوریتم رمزنگاری تصویر مبتنی بر گروه جایگشت Sn و توابع آشوب، پدافند الکترونیکی و سایبری, 3 شماره 8 (1399) 139--150.