عملگر شکلی توزیع $ (n-1) $-بعدی روی خمینه $ n $-بعدی و دسته‌بندی آن‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه ریاضی، دانشکده ریاضی، دانشگاه ولیعصر (عج)، رفسنجان، ایران

چکیده

هدف از این مقاله، بررسی عملگر شکلی یک توزیع $ (n-1) $-بعدی روی یک خمینه $ n $-بعدی هموار است. در این مطالعه ابتدا فرمول‌هایی را برای عملگر شکلی و مؤلفه‌های متقارن و پادمتقارن آن ارائه می‌کنیم و در ادامه ارتباط آن‌ها با مفاهیمی مانند انتگرال‌پذیری، تماماً نافی و ژئودزیک را نشان می‌دهیم. سرانجام، با درنظر گرفتن حداکثر دو مقدار ویژه برای عملگر شکلی، به دسته‌بندی این توزیع‌ها و برگ‌بندی آنها در فضافرم‌های ساده‌همبند می‌پردازیم.

کلیدواژه‌ها


[1] L. J. Alías and S. M. B. Kashani, Hypersurfaces in space forms satisfying the condition Lk x = Ax + b, Taiwanese J. Math., 14 no. 5 (2010) 1957–1977.
[2] I. Androulidakis and M. Zambon, Stefan-Sussmann singular foliations, singular subalgebroids and their associated sheaves, Int. J. Geom. Methods Mod. Phys., 13 (2016) 17 pp.
[3] P. Baird and J. C. Wood, Harmonic morphisms between Riemannian manifolds, London Mathematical Society Monographs. New Series, no. 29, The Clarendon Press, Oxford University Press, Oxford, 2003.
[4] F. Bullo and A. D. Lewis, Geometric control of mechanical systems: modeling, analysis, and design for simple mechanical control systems, 49, Springer, 2019.
[5] T. E. Cecil and P. J. Ryan, Isoparametric hypersurfaces, in: Geometry of hypersurfaces, Springer, New York, (2015) 85–184.
[6] A. del Pino Gomez, Topological aspects in the study of tangent distributions,13th Young Researchers Workshop on Geometry, Mechanics and Control, 3–67, Textos Mat./Math. Texts, 48, Univ. Coimbra, Coimbra, 2019.
[7] M. P. Do Carmo and J. Flaherty Francis, Riemannian geometry, 6, Springer, 1992.
[8] O. Gil-Medrano, Geometric properties of some classes of Riemannian almost-product manifolds, Rend. Circ. Mat. Palermo (2), 32 no. 3 (1983) 315–329.
[9] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967) 715–737.
[10] N. J. Hicks, Notes on differential geometry, no. 3, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London, 1965.
[11] J. M. Lee, Introduction to Riemannian manifolds, Second edition, Graduate Texts in Mathematics, 176, Springer, Cham, 2018.
[12] M. C. Muñoz Lecanda, On some aspects of the geometry of non integrable distributions and applications, J. Geom. Mech., 10 no. 4 (2018) 445–465.
[13] H. Nijmeijer and A. Van der Schaft, Nonlinear dynamical control systems, 464, Springer-Verlag, New York, 1990.
[14] B. O’neill, Semi-Riemannian geometry with applications to relativity, Academic press, 1983.
[15] B. L. Reinhart, The second fundamental form of a plane field, J. Differential Geometry, 12 no. 4 (1977) 619–627.
[16] B. L. Reinhart, Differential geometry of foliations. The fundamental integrability problem, 99, Springer-Verlag, Berlin, 1983.
[17] H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc., 180 (1973) 171–188.