[1] R. O. Carlson, Tournament matrices: An overview, Thesis (Ph.D.)–Utah State University. ProQuest LLC, Ann Arbor, MI, 2002 152 pp.
[2] C. Eschenbach, F. Hall, R. Hemasinha, S. Kirkland, Z. Li, B. Shader, J. Stuart and J. Weaver, Properties of tournaments among well-matched players, Amer. Math. Monthly, 107 (2000) 881–892
[3] A. Brauer and I. C. Gentry, Some remarks on tournament matrices, Linear Algebra Appl., 5 (1972) 311–318.
[4] R. A. Horn and C. R. Johnson, Matrix analysis, Second edition, Cambridge University Press, Cambridge, 2013.
[5] R. Larson and B. H. Edwards, Elementary Linear Algebra, Sixth edition. D.C. Heath, 1996.
[6] J. S. Maybee and N. Pullman, Tournament matrices and their generalizations. I, Linear and Multilinear Algebra, 28 (1990) 57–70.
[7] J. W. Moon and N. J. Pullman, On the powers of tournament matrices, J. Combinatorial Theory, 3 (1967) 1–9.
[8] Y. Saad, Numerical methods for large eigenvalue problems, Revised edition of the 1992 original [1177405]. Classics in Applied Mathematics, 66, Society for Industrial and Applied Mathematics (SIAM), Philadel-phia, PA, 2011.
[9] E. Seneta, Non-negative matrices and Markov chains, Revised reprint of the second (1981) edition [Springer-Verlag, New York], Springer, New York, 2006.
[10] G. Toth, Elements of mathematics—a problem-centered approach to history and foundations, Undergradu-ate Texts in Mathematics, Readings in Mathematics. Springer, Cham, 2021.
[11] S. Vigna, Spectral ranking, Network Science, 4 (2016) 433–445.