موجک ها ، تقریب و فشرده سازی

نوع مقاله : مقاله ترجمه ای

نویسندگان

1 گروه ریاضی کاربردی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

2 گروه ریاضی کاربردی ،دانشگاه پیام نور، تهران، ایران

3 گروه ریاضی کاربردی، دانشکده‌ی علوم ریاضی و کامپیوتر، دانشگاه خوارزمی، تهران، ایران

چکیده

نوشته حاضر ترجمه مقاله زیر است:
 
M. Vetterli, Wavelets, approximation and comperssion, IEEE signal processing Magazine, 18 no. 5 (2001) 59--73.

کلیدواژه‌ها

موضوعات


[1] R. H. Bamberger and M. J. T. Smith, A filter bank for the directional decomposition of images: Theory and design, IEEE Trans. Signal Processing, 40 (1992) 882–893.
[2] E. Candès, Ridgelets: Theory and applications, Ph.D. dissertation, Dept. Statistics, Stanford University, Stanford, CA, 1998.
[3] E. Candès and D. L. Donoho, Ridgelets: A key to higher-dimensional intermittency?, Phil. Trans. R. Soc. London A., (1999) 2495–2509.
[4] E. J. Candès and D. L. Donoho, Curvelets—A surprisingly effective nonadaptive representation for objects with edges, in Curve and Surface Fitting, A. Cohen, C. Rabutand, and L. L. Schumaker, Eds. Saint-Malo: Vanderbilt University Press, 1999.
[5] A. Cohen, W. Dahmen, and I. Daubechies, Tree approximation and optimale ncoding, Appl. Computational Harmonic Anal., to be published.
[6] R. R. Coifman and M. V. Wickerhauser, Entropy-based algorithms for best basis selection, IEEE Trans. Inform. Theory (Special Issue on Wavelet Transforms and Multiresolution Signal Analysis), 38 (1992) 713–718.
[7] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, 1991.
[8] M. Crouse, R. D. Nowak, and R. G. Baraniuk, Wavelet-based signal processing using hidden Markov models, IEEE Trans. Signal Processing (Special Issue on Wavelets and Filterbanks), (1998) 886–902.
[9] I. Daubechies, Orthonormal bases of compactly supported wavelets, Commun. Pure Appl. Math., 41 (1988) 909–996.
[10] I. Daubechies, Ten Lectures on Wavelets, Philadelphia, PA: SIAM, 1992.
[11] S. R. Deans, The Radon Transform and Some of its Applications, New York: Wiley, 1983.
[12] R. A. DeVore, B. Jawerth, and B. J. Lucier, Image compression through wavelet transform coding, IEEE Trans. Inform. Theory (Special Issue on Wavelet Transforms and Multiresolution Signal Analysis), 38 (1992) 719–746.
[13] M. Do and M. Vetterli, Orthonormal finite ridgelet transform for image compression, in Proc. IEEE Int. Conf. Image Processing, ICIP 2000, Vancouver, Canada, Sept., (2000) 367–370.
[14] M. Do and M. Vetterli, Pyramidal directional filter banks and curvelets, in Proc. IEEE Int. Conf. Image Processing, ICIP 2001, Patras, Greece, Oct. 2001.
[15] D. Donoho, M. Vetterli, R. DeVore, and I Daubechies, Data compression and harmonic analysis, IEEE Trans. Inform Theory (Special Issue, Information Theory: 1948-1998 Commemorative Issue), 44 (1998) 2435–2476.
[16] P. L. Dragotti and M. Vetterli, Wavelet transform footprints: Catching singularities for compression and denoising, in Proc. IEEE Int. Conf. Image Processing, ICIP 2000, Vancouver, Canada, Sept., (2000) 363–366.
[17] P. L. Dragotti and M. Vetterli, Footprints and edgeprints for image denoising and compression, in Proc. IEEE Int. Conf. Image Processing, ICIP 2001, Patras, Greece, 2001.
[18] J. Fourier, Théorie Analytique de la Chaleur, Paris, France: Gauthier-Villars, 1888.
[19] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, Norwell, MA: Kluwer, 1992.
[20] V. K. Goyal, Theoretical foundations of transform coding, IEEE Signal Processing Mag., 18 (2001) 9–21.
[21] V. K. Goyal, Transform Coding, SIAM, to be published.
[22] V. K. Goyal, J. Zhuang and M. Vetterli, Transform coding with backward adaptive updates, IEEE Trans. Inform. Theory, to be published.
[23] S. Mallat, A theory for multiresolution signal decomposition: The wavelet representation, IEEE Trans. Pattern Recognition Machine Intell., 11 (1989) 674–693.
[24] S. Mallat, A Wavelet Tour of Signal Processing, San Diego, CA: Academic, 1998.
[25] S. Mallat and W. L. Hwang, Singularity detection and processing with wavelets, IEEE Trans. Inform. Theory (Special Issue on Wavelet Transforms and Multiresolution Signal Analysis), 38 (1992) 617–643.
[26] S. G. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans. Signal Processing (Special Issue on Wavelets and Signal Processing), 41 (1993) 3397–3415.
[27] F. Mintzer, Filters for distortion-free two-band multirate filter banks, IEEE Trans. Acoust. Speech Signal Processing, 33 (1985) 626–630.
[28] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1989.
[29] A. Ortega, K. Ramchandran, and M. Vetterli, Optimal trellis-based buffered compression and fast approximations, IEEE Trans. Image Processing, 3 (1994) 26–40.
[30] E. Le Pennec and S. Mallat, Image compression with geometric wavelets, in Proc. IEEE Int. Conf. Image Processing, ICIP 2000, Vancouver, Canada, Sept. (2000) 661–664.
[31] P. Prandoni, Optimal segmentation techniques for piecewise stationary signals, Ph.D. dissertation, EPFL, Communications Systems, June 1999.
[32] P. Prandoni and M. Vetterli, Approximation and compression of piecewise-smooth functions, Phil. Trans.
Roy. Soc. London, 357 (1999) p. 1760.
[33] J. Radon, Ueber die bestimmung von funktionen durch ihre integralwerte längst gewisser mannigfaltigkeiten, Berichte Sächsische Akademie der Wissenschaften, Leipzig, (1917) 262–267.
[34] K. Ramchandran and M. Vetterli, Best wavelet packet bases in a rate-distortion sense, IEEE Trans. Image Processing, 2 (1993) 160–175.
[35] A. Said and W. A. Pearlman, A new, fast, and efficient image codec based on set partitioning in hierarchical trees, IEEE Trans. Circuits Syst. Video, 6 (1996) 243–249.
[36] C. B. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948).
[37] J. M. Shapiro, Embedded image coding using zerotrees of wavelet coefficients, IEEE Trans. Signal Processing (Special Issue, Wavelets and Signal Processing), 41 (1993) 3445–3462.
[38] T. Skodras, C. Christopoulos, and T. Ebrahimi, The JPEG 2000 still image compression standard, IEEE Signal Processing Mag., 18 (2001) 36–58.
[39] M. J. T. Smith and T. P. Barnwell III, Exact reconstruction for tree-structured subband coders, IEEE Trans. Acoust., Speech, and Signal Processing, 34 (1986) 431–441.
[40] J. L. Starck, E. Candès, and D. Donoho, The curvelet transform for image denoising, IEEE Trans. Image Processing, submitted for publication.
[41] G. Strang and T. Nguyen, Wavelets and Filter Banks, Cambridge, MA: Wellesley-Cambridge, 1996.
[42] B. Usevitch, Wavelet-based image compression, IEEE Signal Processing Mag., 18 (2001) 22–35.
[43] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Englewood Cliffs, NJ: Prentice-Hall, 1993.
[44] M. Vetterli and J. Kova_cevic´, Wavelets and Subband Coding, Englewood Cliffs, NJ: Prentice-Hall, 1995.
[45] C. Weidmann, Oligoquantization in low-rate lossy source coding, Ph.D. dissertation, EPFL, Communication Systems, July 2000.