[1] M. Dehn, über die Topologie des dreidimensionalen Raumes. Math. Ann., 69 no. 1 (1910) 137–168.
[2] E. Eftekhary, Knot theory and modern mathematical tools (in farsi), preprint, available at https://www.researchgate.net/profile/Eaman-Eftekhary/research.
[3] E. Eftekhary, Knot theory, from past to present (in farsi), preprint, available at https://www.researchgate.net/profile/Eaman-Eftekhary/research.
[4] E. Eftekhary, Seifert fibered homology spheres with trivial Heegaard Floer homology, preprint, available at arXiv:0909.3975 [math.GT].
[5] E. Eftekhary, Floer homology and splicing knot complements, Algebr. Geom. Topol., 15 no. 6 (2015) 3155–3213.
[6] E. Eftekhary, Bordered Floer homology and existence of incompressible tori in homology spheres, Compos. Math., 154 no. 6 (2018) 1222–1268.
[7] A. Floer, An instanton-invariant for 3-manifolds, Comm. Math. Phys., 118 no. 2 (1988) 215–240.
[8] A. Floer, Morse theory for Lagrangian intersections, J. Differential Geom., 28 no. 3 (1988) 513–547.
[9] A. Floer, A relative Morse index for the symplectic action, Comm. Pure Appl. Math., 41 no. 4 (1988) 393–407.
[10] A. Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math., 41 no. 6 (1988) 775–813.
[11] A. Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys., 120 no. 4 (1989) 575–611.
[12] A. Floer, Witten’s complex and infinite-dimensional Morse theory, J. Differential Geom., 30 no. 1 (1989) 207–221.
[13] A. Haefliger and M. W. Hirsch, On the existence and classification of differentiable embeddings, Topology, 2 (1963) 129–135.
[14] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom., 17 no. 2 (1982) 255–306.
[15] W. Jaco, and P. B. Shalen, A new decomposition theorem for irreducible sufficiently-large 3-manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, 71–84, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, RI, 1978.
[16] W. H. Jaco and P. B. Shalen, Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc., 21 no. 220 (1979) 192 pp.
[17] K. Johannson, Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in Mathematics, 761, Springer, Berlin, 1979.
[18] H. Kneser, Geschlossene fl achen in dreidimensionalen mannigfaltigkeiten, Jber. Deutsch. Math. Verein., 38 (1929) 248–260.
[19] P. Kronheimer and T. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett., 1 no. 6 (1994) 797–808.
[20] C. Kutluhan, Y.-J. Lee and C. H. Taubes, HF = HM , I: Heegaard Floer homology and Seiberg-Witten Floer homology, Geom. Topol., 24 no. 6 (2020) 2829–2854.
[21] C. Kutluhan, Y.-J. Lee and C. H. Taubes, HF = HM , II: Reeb orbits and holomorphic curves for the ech/Heegaard Floer correspondence, Geom. Topol., 24 no. 6 (2020) 2855–3012.
[22] C. Kutluhan, Y.-J. Lee and C. H. Taubes, HF = HM , III: holomorphic curves and the differential for the ech/Heegaard Floer correspondence, Geom. Topol., 24 no. 6 (2020) 3013–3218.
[23] C. Kutluhan, Y.-J. Lee and C. H. Taubes, HF=HM, IV: The Sieberg-Witten Floer homology and ech correspondence, Geom. Topol., 24 no. 7 (2020) 3219–3469.
[24] C. Kutluhan, Y.-J. Lee and C. H. Taubes, HF=HM, V: Seiberg-Witten Floer homology and handle additions, Geom. Topol., 24 no. 7 (2020) 3471–3748.
[25] E. E. Moise, Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2), 56 (1952) 96–114.
[26] J. Morgan and G. Tian, Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs, 3, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007.
[27] J. W. Morgan, Z. Szabó and C. H. Taubes, A product formula for the Seiberg-Witten invariants and the generalized Thom conjecture, J. Differential Geom., 44 no. 4 (1996) 706–788.
[28] G. D. Mostow, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math., no. 34 (1968) 53–104.
[29] G. D. Mostow, Strong rigidity of locally symmetric spaces. Annals of Mathematics Studies, no. 78, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1973.
[30] P. Ozsváth and Z. Szabó, The symplectic Thom conjecture, Ann. of Math. (2), 151 no. 1 (2000) 93–124.
[31] P. Ozsváth and Z. Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2), 159 no. 3 (2004) 1159–1245.
[32] P. Ozsváth and Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2), 159 no. 3 (2004) 1027–1158.
[33] P. Ozsváth and Z. Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math., 202 no. 2 (2006) 326–400.
[34] C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Proc. Nat. Acad. Sci. U.S.A., 43 (1957) 169–172.
[35] C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. (2), 66 (1957) 1–26.
[36] G. Perelman,The entropy formula for the ricci flow and its geometric applications,(2002), arXiv:math.DG/0211159.
[37] G. Perelman, Finite extinction time for the solutions to the ricci flow on certain three-manifolds, (2003), arXiv:math.DG/0307245.
[38] G. Perelman, Ricci flow with surgery on three-manifolds, (2003), arXiv:math.DG/0303109.
[39] H. Poincaré, Analysis situs, J. École Polytech., 2 (1895) 1–123.
[40] H. Poincaré, Complément á l’analysis situs, Rend. Circ. Mat. Palermo, 13 (1899) 285–343.
[41] H. Poincaré, Second complément á l’analysis situs, Proc. London Math. Soc., 32 (1900) 277–308.
[42] H. Poincaré, Sur certaines surfaces algébriques: troisiéme complément á l’analysis situs, Bull. Soc. Math. France, 30 (1902) 49–70.
[43] H. Poincaré, Sur les cycles des surfaces algébriques: quatriéme complément á l’analysis situs, J. Math. Pur. Appl., 8 (1902) 169–214.
[44] H. Poincaré, Cinquiéme complément á l’analysis situs, Rend. Circ. Mat. Palermo, 18 (1904) 45–110.
[45] H. Poincaré, Papers on topology, 37 of History of Mathematics, American Mathematical Society, Providence, RI; London Mathematical Society, London, 2010, ıt Analysis situs and its five supplements, Translated and with an introduction by John Stillwell.
[46] G. Prasad, Strong rigidity of Q-rank 1 lattices, Invent. Math., 21 (1973) 255–286.
[47] S. Sarkar and J. Wang, An algorithm for computing some Heegaard Floer homologies, Ann. of Math. (2), 171 no. 2 (2010) 1213–1236.
[48] H. Seifert, Topologie Dreidimensionaler Gefaserter Räume, Acta Math., 60 no. 1 (1933) 147–238.
[49] J. R. Stallings, J. grushko’s theorem ii, kneser’s conjecture, Notices Amer. Math. Soc., 6 (1959) 531–532.
[50] J. R. Stallings, Some topological proofs and extensions of Grusko’s theorem, ProQuest LLC, Ann Arbor, MI, 1959.
[51] W. P. Thurston, Three-dimensional geometry and topology. Vol. 1, 35 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1997.
[52] C. T. C. Wall, All 3-manifolds imbed in 5-space, Bull. Amer. Math. Soc., 71 (1965) 564–567.
[53] H. Whitney, Differentiable manifolds, Ann. of Math. (2), 37 no. 3 (1936) 645–680.