[1] M. R. Ahmadi Zand, An algebraic characterization of Blumberg spaces, Quaest. Math., 33 (2010) 223–230.
[2] M. R. Ahmadi Zand and Z. Khosravi, Remarks on the rings of functions which have a finite number of discontinuities, Appl. Gen. Topol., 22 (2021) 139–147.
[3] F. Azarpanah and M. Mohamadian,√z -ideals and√z◦ -ideals in C(X), Acta Math. Sin., 23 (2007) 989–996.
[4] A. Deb Ray and A. Mondal, On rings of Baire one functions, Appl. Gen. Topol., 20 (2019) 237–249.
[5] A. Deb Ray and A. Mondal, Ideals in B1 (X) and residue class rings of B1 (X) modulo an ideal, Appl. Gen. Topol., 20 (2019) 379–393.
[6] R. Engelking, General Topology, Heldermann-Verlag, Berlin, 1989.
[7] Z. Gharabaghi, M. Ghirati and A. Taherifar, On the rings of functions which are discontinuous on a finite set, Houston J. Math., 44 (2018) 721–739.
[8] L. Gillman and M. Jerison, Rings of Continuous Funcions, Springer, London, 1976.
[9] F. Hausdorff, Set Theory, 2nd ed., Chelsea, NewYork, 1962.
[10] C. B. Huijsmans and B. de Pagter, On z -ideals and d-ideals in Riesz spaces I, Ned. Akad. Wet. Indag. Math., 42 (1980) 183–195.
[11] J. E. Jayne, Spaces of Baire functions, Baires classes and Suslin sets, Ph. D. Dissertation, Columbia University, 1971.
[12] E. R. Lorch, Compactifications, Baire functions and Daniell integration, Acta. Sci. Math. (Szeged), 24 (1963) 204–218.
[13] G. Mason, Z-ideals and prime ideals, J. Algebra, 26 (1973) 280–297.
[14] R. D. Mauldin, On the Baire system generated by a linear lattice of functions, Fund. Math., 68 (1970) 51–59.
[15] P. R. Meyer, Function spaces and the Alcksander-Urysohn Conjecture, Ann. Mat. Pura. Appl., 86 (1970) 25–29.
[16] M. A. Mulero, Algebraic properties of rings of continuous functions, Fund. Math., 149 (1996) 55–66.