[1] P. Erdős, Some recent progress on extremal problems in graph theory, Proceedings of the Sixth Southeastern Conference on Combina-torics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975) Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Man., (1975) 3–14. https://users.renyi.hu/~p_erdos/1975-42.pdf
[2] P. Erdős and M. Simonovits, Some extremal problems in graph theory, Combinatorial theory and its applications, I (Proc. Colloq., Bala-tonfüred, 1969), North-Holland, Amsterdam, 1970 377-390. https://users.renyi.hu/~miki/1970-22ErdSimCube.pdf
[3] P. Erdős and M. Simonovits, Cube-supersaturated graphs and related problems, Progress in graph theory (Waterloo, Ont., 1982), Academic Press, Toronto, ON, 1984 203-218. https://users.renyi.hu/~p_erdos/1984-04.pdf
[4] O. Janzer and B. Sudakov, Resolution of the Erdős-Sauer problem on regular subgraphs, https://doi.org/10.48550/arXiv.2204.12455
[5] L. Pyber, Regular subgraphs of dense graphs, Combinatorica, 5 (1985) 347–349. https://doi.org/10.1007/BF02579250
[6] L. Pyber, V. Rödl and E. Szemerédi, Dense graphs without 3-regular subgraphs, J. Combin. Theory Ser. B, 63 (1995) 41-54. https://doi.org/10.1006/jctb.1995.1004
[7] L. Sloman, Mathematical Connect-the-Dots Reveals How Structure Emerges, Quanta Magazine, June 23, 2022. https://www.quantamagazine.org/new-proof-shows-when-structure-must-emerge-in-graphs-20220623/
[8] C. Thomassen, Girth in graphs, J. Combin. Theory Ser. B, 35 (1983) 129-141. https://doi.org/10.1016/0095-8956(83) 90067-9