[1] M. A. Armstrong, Groups and Symmetry, New York: Springer-Verlag, 1988.
[2] J. L. Bell and K. Herbert and W. Hermann, The Stanford Encyclopedia of Philosophy, (Spring 2011 Edition),
Edward N. Zalta and ed, http://plato.stanford.edu/archives/spr2011/ entries/weyl/,M. Berger, 1987, Geometry.
[3] M. Berger and I. Geometry, London, Berlin, Heidelberg: Springer-Verlag, 1987.
[4] C. Bier, Piety and Power in Early Sasanian Art, in Official Cult and Popular Religion in the Ancient Near East, E. Masushima, ed. Heidelberg: Universitätsverlag C. Winter, 1993 171–194.
[5] J. Bonner, Three Traditions of Self-similarity in Fourteenth and Fifteenth Century Islamic Geometric Ornament,
in Proceedings ISAMA/Bridges: Mathematical Connections in Art, Music and Science, R. Sarhangi and N.
Friedman, eds. Granada, 2003 1–12.
[6] E. Broug, Islamic Geometric Patterns, London: Thames Hudson, 2008.
[7] H. S. M. Coxeter, Introduction to Geometry, New York: John Wiley Sons, 1961.
[8] M. Hammermesh, Group Theory and its Application to Physical Problems, (1962), Rpt. Mineola, NY: Dover Publications, 1989.
[9] D. L. Johnson, Symmetries, London, Berlin, Heidelberg: Springer-Verlag, 2001.
[10] O. Jones, The Grammar of Ornament, (1865), Mineola, NY: Dover Publications, 1987.
[11] P. Lu and P. Steinhardt, Decagonal and Quasi-Crystalline Tilings in Medieval Islamic Architecture. Science, 2007
1106–1110.
[12] E. Makovicky, 800-Year Old Pentagonal Tiling from Maragha, Iran, and the New Varieties of Aperiodic Tiling
it Inspired in Fivefold Symmetry, I. Hargittai, ed. Singapore: World Scientific, 1992.
[13] J. J. Rotman, Galois Theory, New York: Springer-Verlag, 1990.
[14] M. Senechal, Crystalline Symmetries: An Informal Mathematical Introduction, Bristol: Adam Hilger, 1990.
[15] ———, Quasicrystals and Geometry, Cambridge: Cambridge University Press, SMITH, G. and O. TABACH-NIKOVA, 2000, Topics in Group Theory, London, Berlin, Heidelberg: Springer-Verlag, 1995.
[16] J. P. Tignol, Galois Theory of Algebraic Equations, Singapore: World Scientific Books, 2001.
[17] H. Weyl, The Classical Groups: Their Invariants and Representations, Princeton: Princeton University Press,
1939.
[18] ———, The Theory of Groups and Quantum Mechanics, Mineola, NY: Dover Publications, 1950.
[19] ———, Symmetry. Princeton: Princeton University Press, 1952.
[20] [Frieze Groups]: http://en.wikipedia.org/wiki/Frieze_group.
[21] [Groups]: http://en.wikipedia.org/wiki/Group_%28mathematics%29.
[22] [JUHEL]: Art, Architecture et Symétrie, http://home.nordnet.fr/\simajuhel/Weyl/weyl$_$intro.
html (in French).
[23] [Symmetry and Patterns]: The Art of Oriental Carpets: http://mathforum.org/geometry/rugs/
symmetry/.
[24] [Wallpaper Groups]: http://en.wikipedia.org/wiki/Wallpaper_group#cite_ref-0
[25] [Wallpaper Groups]: http://www.clarku.edu/\simdjoyce/wallpaper/index.html