[1] R. Akhtar, Cyclotomic Euclidean number fields, Senior thesis, Harvard Univ., 1995.
[2] E. Artin, Collected Papers, Reading, MA: Addison-Wesley, 1965.
[3] M. Artin, Algebra, Prentice-Hall, 1991.
[4] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
[5] E. S. Barnes and H. P. F. Swinnerton-Dyer, The inhomogeneous minima of binary quadratic forms I , Acta Math., 87 (1952)
259–323.
[6] O. A. Campoli, A principal ideal domain that is not a Euclidean domain, American Mathematical Monthly, 95 (1988) 868–871.
[7] J. P. Cerri, Inhomogeneous and Euclidean spectra of number fields with unit rank strictly greater than 1, J. Reine Angew. Math.,
592 (2006) 49–62.
[8] V. Cioffari, The Euclidean condition in pure cubic and complex quartic fields, Math. Comp., 33 (1979) 389–398.
[9] D. CLARK, A Quadratic Field that is Euclidean but not Norm-euclidean, Manuscripta Mathematica, 83 (1994) 327–330.
[10] D. A. Clark, The Euclidean algorithm for Galois extensions of the rational numbers, Ph. D. thesis, McGill University, Mon-treal, 1992.
[11] D. A. Clark and M. R. Murty, The Euclidean algorithm in Galois extensions of Q , J. Reine Angew. Math., 459 (1995) 151–162.
[12] H. Davenport, Euclid’s algorithm in cubic elds of negative discriminant, Acta Math., 84 (1950) 159–179.
[13] M. A. Jodeit, Uniqueness in the division algorithm, The American Mathematical Monthly, 74 (1967) 835–836.
[14] R. Gupta and M. Murty, A remark on Artin’s conjecture, Invent.Math., 78 (1984) 127–130.
[15] R. Gupta, M. R. Murty and V. K. Murty, The Euclidean algorithm for S-integers, Canad. Math. Soc. Conference Proc., 7
(1987) 189–201.
[16] M. Harper, A family of Euclidean rings containing Z[
p ۱۴ ] , CMS talk, 1998.
[17] M. Harper, Z[
p ۱۴ ] is Euclidean, Canad. J. Math., 56 (2004) 55–70.
[18] M. Harper and M. R. Murty, Euclidean rings of algebraic integers, Canad. J. Math., 56 (2004) 71–76.
[19] W. Heinzer and M. Roitman, Principal ideal domains and Euclidean domains having 1 as the only unit, Comm. Algebra, 29
(2001) 5197–5208.
[20] N. Jacobson, Lectures in Abstract Algebra I, Van Nostrand, Princeton, N. J., 1951.
[21] M. A. Jodeit, Uniqueness in the Division Algorithm, The American Mathematical Monthly, 74 (1967) 835–836.
[22] F. Lemmermayer, The Euclidean algorithm in algebraic number fields, Expo. Math., 13 (1995) 385–416.
[23] F. Lemmermayer, Euclids algorithm in quartic CM-fields, ArXiv e-prints, (2011).
[24] H.W. Lenstra, Euclidean number fields of large degree, Inventiones math., 38(1977) 237–254.
[25] H.W. Lenstra, Euclidean number fields 1, 2 and 3, The Mathematical Intelligencer, Springer-Verlag (1979), 1980, 1980 resp.)
6-15; 73–77; 99–103 resp.
[26] J. M. Masley and H. L. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math., 286/287, (1976),
248–256.
[27] Th. Motzkin, The Euclidean algorithm, Bull. Amer. Math. Soc., 55 (1949), 1142–1146.
[28] K. Rogers, The Axioms for Euclidean Domains, The American Mathematical Monthly, 78 (1971) no. 10, 1127–1128.
[29] P. Ribenboim, Algebraic Numbers, John Wiley and Sons, 1972.
[30] P. Samuel, About Euclidean rings, J. Algebra 19 (1971) 282–301.
[31] P. Samuel and 0. Zariski, Commutative Algebra I, Van Nostrand, Princeton, N. J., 1958.
[32] B. L. van and der Waerden, Modern Algebra I, Ungar, New York, 1949.
[33] P. J. Weinberger, On Euclidean rings of algebraic integers, Proc. Symp. Pure Math., 24 (1973) 321–332.
[34] K.S. Williams, Note on non-Euclidean principal ideal domains, Mathematics Magazine,48 (1975) no. 3, 176–177.
http://dx.doi.org/10.22108/msci.2018.106491.1248 ٣۴
٢١–٣۵ (١٣٩٧) ٢ هرﺎﻤﺷ ،٣ ﺪﻠﺟ /ﻪﻌﻣﺎﺟ و ͬﺿﺎﯾر ﻪﯾﺮﺸﻧ ،ͬﺳﺪﯿﻠﻗا یﺎﻫ هزﻮﺣ رد ͬﺨﯾرﺎﺗ یﺮﯿﺳ
[35] J.C. Wilson, A principal ideal ring that is not a Euclidean ring, Mathematics Magazine, 46 (1973) no. 1, 34–38.
[36] C. Wong, On a principal ideal domain that is not a Euclidean domain, International Mathematical Forum, 8, 2013, no. 29,
1405–1412.