مطالعه مساله برج هانوی و تعمیم آن

نوع مقاله : مقاله پژوهشی

نویسنده

عضو هیات علمی دانشگاه اردکان

چکیده

مساله برج هانوی، یک مساله با ریشه‌ی تاریخی است و لوکاس، ریاضی‌دانان فرانسوی، آن را تنظیم کرده است. در این مقاله، مساله مشهور برج هانوی و تعمیم آن‌را بیان نموده و حل بهینه‌ی آن‌ها را به روش بازگشتی و بر اساس نظریه گراف بررسی می‌نماییم. نشان داده می‌شود که گراف حاصل از حل مساله برج هانوی با رسم گراف متناظر با آن، فراکتال سرپینسکی است.

کلیدواژه‌ها


[1] ا. بابلیان، ‎مباحثی در ریاضیات گسسته، انتشارات مبتکران، ‎۱۳75‎.
[2] س. کردرستمی، ر. احمدزاده گرامی، آ. قانع، ص. پورجعفر، ‎مروری بر برج هانوی و ارایه یک فرمول جدید، مجله ریاضیات کاربردی واحد لاهیجان، 4 ‎‎ ‎41-47 (1386)‎.
 
[3] ع. مشهدی، ک. رسول‌زاده طباطبایی، پ. آزادفلاح، ع. سلطانی‌فر، ‎‎ توانایی برنامه‌ریزی و سازمان دهی در کودکان مبتلا به اختلال نارسایی توجه/فزون کنشی، مطالعات تربیتی و روان شناسی، 11 (1389) ‎‎‎151-170‎.
[4] S. Epp, Discrete Mathematics: Introduction to Mathematical Reasoning, Nelson Education, 2011.
[5] A. M. Hinz and et. al., The Tower of Hanoi–Myths and Maths, Springer Science Business Media, 2013.
[6] E. Rufati, B. Rahmani and B. Percinkova, Analysis of Recursive Algorithms for Solving the Problemof
the Tower of Hanoi, Anglisticum Journal, 2 (2016) 12–18.
[7] M. Shinoda, E. Teufl and S. Wagner, Uniform spanning trees on Sierpinski graphs, Lat. Am. J. Probab.
Math. Stat., 11 (2014) 737-780.
[8] E. Lucas, Recrations Mathematiques, 3, Gauthier-Villars, Paris, 1893.
[9] J. P. Allouche, D. Astoorian, J. Randall and J. Shallit, Morphisms, squarefree strings, and the tower of
Hanoi puzzle, Amer. Math. Monthly, 101 (1994) 651–658.
[10] E. L. Spitznagel, Selected topics in mathematics, Holt, Rinehart and Winston, 1971.
[11] E. Vakil, M. Lowe and C. Goldfus, Performance of Children With Developmental Dyslexia on Two
Skill Learning Tasks—Serial Reaction Time and Tower of Hanoi Puzzle A Test of the Specific Proce-
dural Learning Difficulties Theory, J. Learn. Disabil., 48 (2015) 471–481.
[12] R. Bull, K. A. Espy and T. E. Senn, A comparison of performance on the Towers of London and Hanoi
in young children, J. Child. Psychol. Psychiatry, 45 (2004) 743–754.
[13] R. Snapp, Tower of Hanoi, Lecture Notes for CS 5, 2005.
[14] B. A. Brousseau, Tower of Hanoi with more pegs, J. Recr. Math., 8 (1975-76) 169–176.
[15] M. K. Lee, The graph for the Tower of Hanoi with four pegs, Pythagoras, 57 (2003) 27–31.
[16] A. M. Hinz and P. Daniele, On the planarity of Hanoi graphs, Expo. Math., 20 (2002) 263–268.
[17] C. A. Knoblock, Abstracting the tower of Hanoi, Working Notes of AAAI-90 Workshop on Automatic
Generation of Approximations and Abstractions, 1990.
[18] H. Masum, S. Christensen and F. Oppacher, The Turing Ratio: Metrics For Open-ended Tasks, Pro-
ceedings of the Genetic and Evolutionary Computation Conference, New York, USA, 2002.