[1] F. Abtahi, Z. Kamali, M. Toutounchi, The Bochner-Schoenberg-Eberlein property for vector-valued Lipschitz algebras, J. Math. Anal. Appl., 479 (2019) 1172–1181.
[2] F. Abtahi, Z. Kamali and M. Toutounchi, The BSE concepts for vector-valued Lipschitz algebras, Commun. Pure Appl. Anal., 20 no. 3 (2021) 1171–1186.
[3] M. Alaghmandan, R. Nasr Isfahani and M. Nemati, Character amenability and contractibility of abstract Segal algebras, Bull. Aust. Math. Soc., 82 (2010) 274–281.
[4] S. Bochner, A theorem on Fourier- Stieltjes integrals, Bull. Amer. Math. Soc., 40 (1934) 271–276.
[5] J. T. Burnham, Closed ideals in subalgebras of Banach algebras. I, Proc. Amer. Math. Soc., 32 no. 2 (1972) 551–555.
[6] H. G. Dales and A. Ülger, Approximate identities and BSE norms for Banach functin algebras, Fields Institute, Toronto, 2014.
[7] H. G. Dales and A. Ülger, Banach function algebras and BSE norms, Graduate course during 23rd Banach algebra conference, Oulu, Finland, 2017.
[8] W. F. Eberlein, Characterizations of Fourier-Stieltjes transforms, Duke Math. J., 22 (1955) 465–468.
[9] J. Inoue, Jyunji and Sin-Ei. Takahasi, Constructions of bounded weak approximate identities for Segal algebras on LCA groups, Acta Sci. Math. (Szeged), 66 (2000) 257–271.
[10] J. Inoue, Jyunji and Sin-Ei. Takahasi, Segal algebras in commutative Banach algebras, Rocky Mt. J. Math., 44 no. 2 (2014) 539–589.
[11] C. A. Jones and C. D. Lahr, Weak and norm approximate identities are different, Pacific J. Math., 72 (1977) 99–104.
[12] E. Kaniuth, A course in commutative Banach algebras, Springer, New York, 2009.
[13] E. Kaniuth and A. Ülger, The Bochner-Schoenberg-Eberlein property for commutative Banach algebras, especially Fourier and Fourier-Stieltjes algebras, Trans. Amer. Math. Soc., 362 (2010) 4331–4356.
[14] E. Kaniuth, The Bochner-Schoenberg-Eberlein Property and Spectral Synthesis for Certain Banach Algebra Products, Canad. J. Math., 67 (2015) 827–847.
[15] Yu. N. Kuznetsova, Weighted Lp −algebras on groups, Funktsional. Anal. i Prilozhen., 40 no. 3 (2006) 82–85. Translation in Funct. Anal. Appl., 40 no. 3 (2006) 234–236.
[16] Yu. N. Kuznetsova, Invariant weighted algebras Lp (G, ω), Mat. Zametki, 84 no. 4 (2008) 567–576.
[17] Yu. N. Kuznetsova, Example of a weighted algebra Lp (G, ω) on an uncountable discrete group, J. Math. Anal. Appl., 353 (2009) 660–665.
[18] R. Larsen, An introduction to the theory of multipliers, Springer-Verlag, New York, 1971.
[19] W. Rudin, Fourier analysis on groups, Interscience, New York, 1962.
[20] I. J. Schoenberg, A remark on the preceding note by Bochner, Bull. Amer. Math. Soc., 40 (1934) 277–278.
[21] S. E. Takahasi and O. Hatori, Commutative Banach algebras which satisfy a Bochner-Schoenberg Eberlein-type theorem, Proc. Amer. Math. Soc., 110 (1990) 149–158.
[22] S. E. Takahasi and O. Hatori, Commutative Banach algebras and BSE-inequalities, Math. Japonica, 37 (1992) 47–52.
[23] S. E. Takahasi, Y. Takahashi, O. Hatori and K. Tanahashi, Commutative Banach algebras and BSE-norm, Math. Japonica, 46 no. 2 (1997) 273–277.