[1] P. L. Antonelli, A. Bona and M. A. Slawinski, Seismic rays as Finsler geodesics, Nonlinear Anal. Real World Appl., 4 no. 5 (2003) 711–722.
[2] D. Bao, S. S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry, Springer-Verlag, New York, 2000.
[3] G. Calvaruso and R. A. Marinosci, Homogeneous geodesics in five-dimensional generalized symmetric spaces, Balkan J. Geom. Appl., 8 no. 1 (2003) 1–19.
[4] M. Ebrahimi and D. Latifi, Geodesic vectors of Randers metric on generalized symmetric spaces, Glob. J. Adv. Res. Class. Mod. Geom., 2 no. 2 (2021) 153–165.
[5] P. Habibi, Geodesic vectors of invariant square metrics on nilpotent Lie groups of dimension five, J. Finsler Geom. Appl., 2 no.1 (2021) 131–140.
[6] B. Kostant, Holonomy and Lie algebra of motions in Riemannian manifolds, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[7] O. Kowalski, Generalized symmetric spaces Lecture Notes in Mathematics, Springer-Verlag, Berlin, New York, 1980.
[8] O. Kowalski and L. Vanhecke, Riemannian manifolds with homogeneous geodesics, Boll. Un. Mat. Ital. B (7), 5 no. 1 (1991) 189–246.
[9] O. Kowalski and J. Szenthe, On the existence of homogeneous geodesics in homogeneous Riemannian manifolds, Geom. Dedicata, 81 no. 1-3 (2000) 209–214.
[10] D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys., 57 no. 5 (2007) 1421–1433.
[11] D. Latifi and M. Toomanian, Invariant naturally reductive Randers metrics on homogeneous spaces, Math. Sci. (Springer), 6 (2012) 5 pp.
[12] D. Latifi, Bi-invariant (α, β)-metrics on Lie groups, Acta Univ. Apulensis Math. Inform., 65 (2021) 121–131.
[13] D. Latifi, On generalized symmetric square metrics, Acta Univ. Apulensis Math. Inform., 68 (2021) 63–70.
[14] M. Matsumoto, On C-reducible Finsler spaces, Tensor (N.S.), 24 (1972) 29–37.
[15] M. Parhizkar and H. R. Salimi Moghaddam, Naturally reductive homogeneous (α, β)-metric spaces, Arch. Math. (Brno), 57 no. 1 (2021) 1–11.
[16] G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev. (2), 59 (1941) 195–199.
[17] H. R. Salimi Moghadam, A class of generalized symmetric Finsler spaces, Journal of Mathematics and Society, 5 no. 3 (2020) 15–22. [In Persian]
[18] E. B. Vinberg, Invariant linear connection in a homogeneous manifold, Trudy Moskov. Mat. Obšč., 9 (1960) 191–210.
[19] Z. Yan and L. Huang, On the existence of homogeneous geodesic in homogeneous Finsler spaces, J. Geom. Phys., 124 (2018) 264–267.
[20] M. L. Zeinali, On generalized symmetric Finsler spaces with some special (α, β)-metrics, J. Finsler Geom. Appl., 1 no. 1 (2020) 45–53.
[21] M. L. Zeinali, Flag curvature of invariant 3-power metrics on homogeneous spaces, J. Finsler Geom. Appl., 4 no. 1 (2023) 124–132.