Geodesic vectors of square metrics on 5- dimensional generalized symmetric spaces

Document Type : Research Paper

Authors

Department of Mathematics, University of Mohaghegh Ardabili, P.O.Box 5619911367, Ardabil, Iran

Abstract

In this paper, we consider the $(\alpha, \beta)$-metric $F=\frac{(\alpha + \beta)^2}{\alpha}$ along with the function $\phi$ with the definition of $\phi(s)=1+2s+s^2$, which is known as a square metric, on 5-dimensional generalized symmetric spaces. Then we investigate and study the homogeneous geodesics of 5-dimensional generalized symmetric spaces equipped with a left invariant square metric. We also obtain and categorize the homogeneous geodesics of these spaces in some special cases, which are of type (2), (3) and (7). Also we show that for a 5-dimensional generalized symmetric space of type (2) and (7) equipped with a left invariant square metric, the geodesic vectors of $(M,F)$ are the same as the geodesic vectors of $(M, \tilde{a})$ and vice versa.

Keywords


[1] P. L. Antonelli, A. Bona and M. A. Slawinski, Seismic rays as Finsler geodesics, Nonlinear Anal. Real World Appl., 4 no. 5 (2003) 711–722.
[2] D. Bao, S. S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry, Springer-Verlag, New York, 2000.
[3] G. Calvaruso and R. A. Marinosci, Homogeneous geodesics in five-dimensional generalized symmetric spaces, Balkan J. Geom. Appl., 8 no. 1 (2003) 1–19.
[4] M. Ebrahimi and D. Latifi, Geodesic vectors of Randers metric on generalized symmetric spaces, Glob. J. Adv. Res. Class. Mod. Geom., 2 no. 2 (2021) 153–165.
[5] P. Habibi, Geodesic vectors of invariant square metrics on nilpotent Lie groups of dimension five, J. Finsler Geom. Appl., 2 no.1 (2021) 131–140.
[6] B. Kostant, Holonomy and Lie algebra of motions in Riemannian manifolds, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[7] O. Kowalski, Generalized symmetric spaces Lecture Notes in Mathematics, Springer-Verlag, Berlin, New York, 1980.
[8] O. Kowalski and L. Vanhecke, Riemannian manifolds with homogeneous geodesics, Boll. Un. Mat. Ital. B (7), 5 no. 1 (1991) 189–246.
[9] O. Kowalski and J. Szenthe, On the existence of homogeneous geodesics in homogeneous Riemannian manifolds, Geom. Dedicata, 81 no. 1-3 (2000) 209–214.
[10] D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys., 57 no. 5 (2007) 1421–1433.
[11] D. Latifi and M. Toomanian, Invariant naturally reductive Randers metrics on homogeneous spaces, Math. Sci. (Springer), 6 (2012) 5 pp.
[12] D. Latifi, Bi-invariant (α, β)-metrics on Lie groups, Acta Univ. Apulensis Math. Inform., 65 (2021) 121–131.
[13] D. Latifi, On generalized symmetric square metrics, Acta Univ. Apulensis Math. Inform., 68 (2021) 63–70.
[14] M. Matsumoto, On C-reducible Finsler spaces, Tensor (N.S.), 24 (1972) 29–37.
[15] M. Parhizkar and H. R. Salimi Moghaddam, Naturally reductive homogeneous (α, β)-metric spaces, Arch. Math. (Brno), 57 no. 1 (2021) 1–11.
[16] G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev. (2), 59 (1941) 195–199.
[17] H. R. Salimi Moghadam, A class of generalized symmetric Finsler spaces, Journal of Mathematics and Society, 5 no. 3 (2020) 15–22. [In Persian]
[18] E. B. Vinberg, Invariant linear connection in a homogeneous manifold, Trudy Moskov. Mat. Obšč., 9 (1960) 191–210.
[19] Z. Yan and L. Huang, On the existence of homogeneous geodesic in homogeneous Finsler spaces, J. Geom. Phys., 124 (2018) 264–267.
[20] M. L. Zeinali, On generalized symmetric Finsler spaces with some special (α, β)-metrics, J. Finsler Geom. Appl., 1 no. 1 (2020) 45–53.
[21] M. L. Zeinali, Flag curvature of invariant 3-power metrics on homogeneous spaces, J. Finsler Geom. Appl., 4 no. 1 (2023) 124–132.