[1] C. Blundell, J. Cornebise, K. Kavukcuoglu and D. Wierstra, Weight uncertainty in neural network, Proc. of the International Conference on Machine Learning PMLR, Lille, France, (2015) 1613–1622.
[2] J. P. Bharadiya, A review of Bayesian machine learning principles, methods, and applications, Int. J. Innov. Sci. Res. Technol., 8 no. 5 (2023) 2033–2038.
[3] R. Chandra, R. Chen and J. Simmons, Bayesian neural networks via MCMC: a Python-based tutorial, (2023). https://doi.org/10.48550/arXiv.2304.02595.
[4] C. M. Carlo, Markov chain monte carlo and gibbs sampling, Lecture Notes for EEB 581, (2004) 24 pp.
[5] A. Graves, Practical variational inference for neural networks, Part of Part of Advances in Neural Information Processing Systems 24 (NIPS), (2011)
[6] A. Gelman, J. B. Carlin, H. S. Stern and D. B. Rubin, Bayesian Data Analysis, Chapman and Hall/CRC, 1995.
[7] Z. Q. Hong and J. Y. Yang, Lung cancer, UCI Machine Learning Repository, (1992). https://doi.org/10.24432/C57596.
[8] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57 no. 1 (1970) 97–109.
[9] L. V. Jospin, H. Laga, F. Boussaid, W. Buntine and M. Bennamoun, Hands-on Bayesian neural networks—A tutorial for deep learning users, IEEE Computational Intelligence Magazine, 17 no. 2 (2022) 29–48.
[10] H. D. Kabir, A. Khosravi, M. A. Hosen and S. Nahavandi, Neural network-based uncertainty quantification: A survey of methodologies and applications, IEEE Access, 6 (2018) 36218–36234.
[11] J. Ker, L. Wang, J. Rao and T. Lim, Deep learning applications in medical image analysis, IEEE Access, 6 (2018) 9375–9389.
[12] I. Oleksiienko, D. T. Tran and A. Iosifidis, Variational neural networks, Procedia Computer Science, 222 (2023) 104–113.
[13] M. R. Meshkani and A. Kavousi Dolanghar, Bayesian Statistical Methods, Shahid Beheshti University of Medical Sciences Press, (2022). [In Persian]
[14] C. P. Robert, G. Casella and G. Casella, Monte carlo statistical methods, 2, Springer, 1999.
[15] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow and R. Fergus, Intriguing properties of neural networks, (2013). arXiv preprint arXiv:1312.6199. https://doi.org/10.48550/arXiv.1312.
6199
[16] S. Sun, G. Zhang, J. Shi and R. Grosse, Functional variational Bayesian neural networks, (2019). arXivpreprint arXiv:1903.05779. https://doi.org/10.48550/arXiv.1903.05779.
[17] S. M. Taheri, Statistics and artificial neural networks, In Proceedings of the 8th Iranian Statistics Conference, Shiraz University, (2006) 81–91. [In Persian]
[18] M. N. Tran, T. N. Nguyen, and V. H. Dao, A practical tutorial on variational Bayes, (2021) 43 p. arXivpreprint arXiv:2103.01327. https://doi.org/10.48550/arXiv.2103.01327
[19] M. J. Zaki and W. Meira Jr, Data mining and machine learning: fundamental concepts and algorithms, Cambridge University Press, 2020.