[1] M. Aigner and G. M. Ziegler, Proofs from the book, Fourth edition� Springer-Verlag, Berlin, 2010.
[2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999) 434–447.
[3] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading,
Mass.-London-Don Mills, Ont., 1969.
[4] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988) 208–226.
[5] J. A. Bondi and J. S. Murty, Graph theory with applications, American Elsevier Publishing Co, INC, 1997.
[6] R. Brauer and K. A. Fowler, On groups of even order, Ann. Math.,62 (1955) 565–583.
[7] P. J. Cameron, Graphs defined on groups, Int. J. Group Theory, 11 no.2 (2022) 53–107.
[8] G. Y. Chen, On Thompson’s conjecture, J. Algebra, 15 (1996) 184–193.
[9] J. Coykendall, S. Sather-wagstaff, L. Sheppardson and S. Spiroff, On zero divisor graphs, Progress in commutative
algebra 2, (2012) 241–299.
[10] H. R. Dorbidi, Independent sets in the coprime graph of a group, 10th Graph Theory and Algebraic Combinatorics Conference of Iran, 2018, Yazd University.
[11] H. R. Dorbidi, A note on the coprime graph of a group, Int. J. Group Theory, 5 no.4 (2016) 17–22.
[12] S. I. El-Zanati, G. F. Seelinger, P. A. Sissokho, L. E. Spence and C. Vanden Eyndenn, On partitions of finite vector spaces of low dimension over GF (2), Discrete Math., 309 (2009) 4727–4735.
[13] O. Heden, A survey of the different types of vector space partitions, Discrete Math. Algorithms Appl., 4 (2012) 14 pp.
[14] S. B. Mulay, Cycles and symmetries of zero-divisors,Comm. Algebra, 30 (2002) 3533–3558.
[15] E. L. Nastase and P. A. Sissokho, The minimum size of a finite subspace partition, Linear Algebra Appl., 435 (2011) 1213–1221.
[16] A. S. Rapinchuk, Y. Segev and M. G. Seitz, Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable, J. Amer. Math. Soc., 15 (2002) 929–978.
[17] G. Seelinger, P. Sissokho, L. Spence and C. Vanden Eynden, Partitions of finite vector spaces over GF (2) into subspaces of dimensions 2 and s, Finite Fields Appl., 18 (2012) 1114–1132.
[18] J. P. Serre, Trees, Translated from the French by John Stillwell. Springer-Verlag, Berlin-New York, 1980.
[19] R. Y. Sharp, Steps in Commutative Algebra, London Mathematical Society Student Texts, 19, Cambridge University Press, Cambridge, 1990.
[20] S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra, 39 (2011) 2338–2348.