Fractal differential and integral calculus: from theory to applications

Document Type : Review Paper

Authors

1 Physics and Accelerators Research Institute, Nuclear Science and Technology Research Institute, North Working End, Tehran

2 Phyric Department, Islamic Azad University, Urmia Branch, Urmia

Abstract

In this article, we introduce the basic concepts of fractal differential and integral calculus and discuss their similarities and differences with classical and fractional calculus. We will see that fractal differential and integral calculus, as well as classical calculus, are local, while fractional calculus is non-local.

Keywords


[1] R. Baillie, Long memory processes and fractional integration in econometrics, J. Econometrics, 73 (1996) 5–59.
[2] N. Delfan, A. Pishkoo, M. Azhini and M. Darus, Using fractal calculus to express electric potential and electric field in terms of staircase and characteristic functions, Eur. J. Pure Appl. Math., 13 (2020) 19–32.
[3] K. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1997.
[4] A. K. Golmankhaneh, About Keplers third law on fractal-time spaces, Ain Shams Eng. J., 9 (2018) 2499–2502.
[5] A. K. Golmankhaneh and D. Baleanu, Diffraction from fractal grating Cantor sets, J. Modern Opt., 63 (2016)
1364–1369.
[6] A. K. Golmankhaneh and D. Baleanu, Heat and Maxwells equations on Cantor cubes, Rom. Rep. Phys., 69 (2017) 1–11.
[7] A. K. Golmankhaneh and D. Baleanu, About Schrödinger equation on fractals curves imbedding in R ۳ , Internat. J. Theoret. Phys., 54 (2015) 1275–122.
[8] A. K. Golmankhaneh and D. Baleanu, Non-local integrals and derivatives on fractal sets with applications, Open Physics. 14 (2016) 542–548.
[9] A. K. Golmankhaneh and D. Baleanu, Fractal calculus involving gauge function, Commun. Nonlinear Sc. Nume. Simul. 37 (2016) 125–130.
[10] A. K. Golmankhaneh and A. S. Balankin, Sub-and super-diffusion on Cantor sets: Beyond the paradox, Phys. Lett. A , 382 (2018) 960–967.
[11] A. K. Golmankhaneh and C. Tunc, On the Lipschitz condition in the fractal calculus, Chaos Solitons Fractals, 95 (2017) 140–147.
[12] A. K. Golmankhaneh and C. Tunc, Sumudu transform in fractal calculus, Appl. Math. Comput. 350 (2019) 386–401.
[13] C. P. Haynes and A. D. Roberts, Generalization of the fractal Einstein law relating conduction and diffusion on networks, Phys. Rev. Lett. 103 (2009) https://doi.org/10.1103/PhysRevLett.103.020601.
[14] F. K. Jafari, M. S. Asgari and A. Pishkoo, Fractal calculus for fractal materials, Fractal Fract. 3 (2019). https://doi.org/10.3390/fractalfract3010008.
[15] K. M. Kolwankar and A. D. Gangal, Fractional differentiability of nowhere differentiable functions and dimensions,
Chaos, 6 (1996) 505–513.
[16] K. M. Kolwankar and A. D. Gangal, Hölder exponents of irregular signals and local fractional derivatives, Pranama-J. Phys., 48 (1997) 49–68.
[17] K. M. Kolwankar and A. D. Gangal, Local fractional calculus: a calculus for fractal space-time, Fractals: theory and applications in engineering, Springer, London, 1999 171–181.
[18] K. M. Kolwankar and A. D. Gangal, Local fractional Fokker-Planck equation, Phys. Rev. Lett., 80 (1998) 214-217.
[19] B. B. Mandelbrot,The Fractal Geometry of Nature, Freeman and Company, New York, 1977.
[20] A. Parvate and A. D. Gangal, Calculus on fractal subsets of real line- II: Conjugacy with ordinary calculus, Fractals, 19 (2011) 271–290.
[21] A. Parvate, Calculus on fractal subsets of real line- I: Formulation, Fractals, 17 (2009) 53–81.
[22] A. Parvate and A. D. Gangal, Fractal diferential equations and fractal-time dynamical systems, Pramana-J. Phys., 64 (2005) 389–409.
[23] R. Pashaei, A. Pishkoo and M. S. Asgari, and D. Ebrahimi Bagh,   -Differentiable functions in complex plane, J. Samara State Tech. Univ. Ser. Phys. Math. Sci., 24 (2020) 379–389.
[24] S. Satin, A. Parvate and A. D. Gangal, Fokker–Planck equation on fractal curves, Chaos Solitons Fractals, 52 (2013) 30–35.
[25] S. Satin and A. D. Gangal, Langevin equation on fractal curves, Fractals, 24 (2016) 7 pp.