A historical overview in the fields of Euclidean geometry

Document Type : Research Paper

Authors

University of Kurdistan

Abstract

This article aims to provide an overview of the history of work conducted in the fields of Euclidean Domains and Euclidean number fields. The goal is to create a foundation for those interested in these mathematical topics.

Keywords

Main Subjects


[1] R. Akhtar, Cyclotomic Euclidean number fields, Senior thesis, Harvard Univ., 1995.
[2] E. Artin, Collected Papers, Reading, MA: Addison-Wesley, 1965.
[3] M. Artin, Algebra, Prentice-Hall, 1991.
[4] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
[5] E. S. Barnes and H. P. F. Swinnerton-Dyer, The inhomogeneous minima of binary quadratic forms I , Acta Math., 87 (1952) 259–323.
[6] O. A. Campoli, A principal ideal domain that is not a Euclidean domain, American Mathematical Monthly, 95 (1988) 868–871.
[7] J. P. Cerri, Inhomogeneous and Euclidean spectra of number fields with unit rank strictly greater than 1, J. Reine Angew. Math., 592 (2006) 49–62.
[8] V. Cioffari, The Euclidean condition in pure cubic and complex quartic fields, Math. Comp., 33 (1979) 389–398.
[9] D. CLARK, A Quadratic Field that is Euclidean but not Norm-euclidean, Manuscripta Mathematica, 83 (1994) 327–330.
[10] D. A. Clark, The Euclidean algorithm for Galois extensions of the rational numbers, Ph. D. thesis, McGill University, Mon-treal, 1992.
[11] D. A. Clark and M. R. Murty, The Euclidean algorithm in Galois extensions of Q , J. Reine Angew. Math., 459 (1995) 151–162.
[12] H. Davenport, Euclid’s algorithm in cubic elds of negative discriminant, Acta Math., 84 (1950) 159–179.
[13] M. A. Jodeit, Uniqueness in the division algorithm, The American Mathematical Monthly, 74 (1967) 835–836.
[14] R. Gupta and M. Murty, A remark on Artin’s conjecture, Invent.Math., 78 (1984) 127–130.
[15] R. Gupta, M. R. Murty and V. K. Murty, The Euclidean algorithm for S-integers, Canad. Math. Soc. Conference Proc., 7 (1987) 189–201.
[16] M. Harper, A family of Euclidean rings containing Z[p 14 ] , CMS talk, 1998.
[17] M. Harper, Z[p ۱۴ ] is Euclidean, Canad. J. Math., 56 (2004) 55–70.
[18] M. Harper and M. R. Murty, Euclidean rings of algebraic integers, Canad. J. Math., 56 (2004) 71–76.
[19] W. Heinzer and M. Roitman, Principal ideal domains and Euclidean domains having 1 as the only unit, Comm. Algebra, 29 (2001) 5197–5208.
[20] N. Jacobson, Lectures in Abstract Algebra I, Van Nostrand, Princeton, N. J., 1951.
[21] M. A. Jodeit, Uniqueness in the Division Algorithm, The American Mathematical Monthly, 74 (1967) 835–836.
[22] F. Lemmermayer, The Euclidean algorithm in algebraic number fields, Expo. Math., 13 (1995) 385–416.
[23] F. Lemmermayer, Euclids algorithm in quartic CM-fields, ArXiv e-prints, (2011).
[24] H.W. Lenstra, Euclidean number fields of large degree, Inventiones math., 38(1977) 237–254.
[25] H.W. Lenstra, Euclidean number fields 1, 2 and 3, The Mathematical Intelligencer, Springer-Verlag (1979), 1980, 1980 resp.) 6-15; 73–77; 99–103 resp.
[26] J. M. Masley and H. L. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math., 286/287, (1976), 248–256.
[27] Th. Motzkin, The Euclidean algorithm, Bull. Amer. Math. Soc., 55 (1949), 1142–1146.
[28] K. Rogers, The Axioms for Euclidean Domains, The American Mathematical Monthly, 78 (1971) no. 10, 1127–1128.
[29] P. Ribenboim, Algebraic Numbers, John Wiley and Sons, 1972.
[30] P. Samuel, About Euclidean rings, J. Algebra 19 (1971) 282–301.
[31] P. Samuel and 0. Zariski, Commutative Algebra I, Van Nostrand, Princeton, N. J., 1958.
[32] B. L. van and der Waerden, Modern Algebra I, Ungar, New York, 1949.
[33] P. J. Weinberger, On Euclidean rings of algebraic integers, Proc. Symp. Pure Math., 24 (1973) 321–332.
[34] K.S. Williams, Note on non-Euclidean principal ideal domains, Mathematics Magazine,48 (1975) no. 3, 176–177.
[35] J.C. Wilson, A principal ideal ring that is not a Euclidean ring, Mathematics Magazine, 46 (1973) no. 1, 34–38.
[36] C. Wong, On a principal ideal domain that is not a Euclidean domain, International Mathematical Forum, 8, 2013, no. 29, 1405–1412.