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COMPLETE CLASSIFICATION OF HOMOGENEOUS STRUCTURES ON

LORENTZIAN DIRECT EXTENSIONS OF THE HEISENBERG GROUP

AMIRHESAM ZAEIM ∗, MEHDI JAFARI AND MOSLEM BAGHGOLI

Abstract. The Heisenberg Lie group is one of the most famous and important Lie groups among the

family of three dimensional Lie groups. The direct extension of this group to the fourth dimension was

taken into consideration in the study of the nilpotent Lie algebras from the fourth dimension, and as

a result, the classification of these extensions up to isometric classes was previously presented in some

research. Homogeneous structures provide us with a tensor approach to investigate the homogeneity

of space. Perhaps the most important feature of homogeneous structures can be summarized in this

statement that in Riemannian geometry, the existence of homogeneous structures is equivalent to being

reductive locally homogeneous of space. In this paper, based on the existing classification of the direct

Lorentzian extension of the Heisenberg group with dimension four, which are isometrically classified

in the form of five families, we study the family of homogeneous structures on this space and classify

them completely. In non-flat cases, we determine the homogeneous structures separately in each class.

1. Introduction

Homogeneous spaces are significant in theoretical physics and differential geometry studies. A

(pseudo-) Riemannian manifold (M, g) is defined such that for any two points p, q ∈ M , an isometry

ϕ exists on M with ϕ(p) = q. In simpler terms, the isometry group I(M) of M acts transitively on it.

While Lie groups and symmetric spaces are basic examples of homogeneous spaces, they encompass a

Keywords: Direct extension, Heisenberg group, Homogeneous structure.

Article Type: Research Paper.

Communicated by Mohamad Reza Pouryayevali.

∗Corresponding author.

Received: 05-02-2024, Accepted: 10-06-2024, Published Online: 25-01-2025.

Cite this article: A. Zaeim, M. Jafari and M. Baghgoli, Complete classification of homogeneous structures on Lorentzian direct

extensions of the Heisenberg group, Journal of Mathematics and Society, 9 no. 4 (2024) 45–70.

http://dx.doi.org/10.22108/msci.2024.140637.1641 .

45

http://math-sci.ui.ac.ir
http://www.ui.ac.ir
https://orcid.org/0000-0001-9304-275X
https://orcid.org/0000-0002-7154-7527
http://dx.doi.org/10.22108/msci.2024.140637.1641


A. Zaeim, M. Jafari and M. Baghgoli, Journal of Mathematics and Society/ 9 no. 4 (2024) 45-70

broader family and offer valuable instances in geometric investigations. Each homogeneous manifold

M can be represented as the quotient manifold G/H of a Lie group G and a closed subgroup H.

This representation, though not unique, provides an algebraic framework for studying homogeneous

spaces and simplifies calculations. For instance, reference [20] employed an algebraic approach to

examine the isometric geometry of symmetric spaces beyond four dimensions. Similarly, reference [2]

utilized an algebraic approach to analyze the Walker structures and Ricci solitons on conformally flat

homogeneous pseudo-Riemannian Lie groups in four dimensions.

By employing homogeneous structures, a tensorial approach can be adopted to analyze the presented

homogenous spaces. Ambrose and Singer initially defined homogeneous structures in Riemannian

mode [1], and Tericerri and Vanhecke subsequently studied them [18]. They were precisely positioned

and subsequently expanded to the pseudo-Riemannian state by Gadea and Oubina [9]. We refer to the

homogeneous space G/H as reductive whenever the Lie algebra g of G can be decomposed as g = m⊕h,

where h is a Lie algebra of H and m is an Ad(H) invariant subspace such that Ad(h)(m) ⊂ m. The

condition Ad(h)(m) ⊂ m implies that [h,m] ⊂ m, and the converse is also true when H is connected.

The categorization of smooth homogenous structures has captivated the interest of researchers in

differential geometry, as exemplified in references [8, 12, 13]. We shall defer further elaboration on

homogeneous structures to the ensuing section.

The three-dimensional Heisenberg group H3 is a mathematical concept that describes a geometric

phenomenon commonly encountered in our daily lives. By selecting a plane in our three-dimensional

space, we essentially create a Heisenberg group. For instance, the page you are currently reading can

be considered a plane that generates a Heisenberg group. Furthermore, the act of taking photographs

places one within the context of Heisenberg Group Theory, as it involves the transfer and encoding of

information along a line onto a page, thereby forming a Heisenberg Group. The Heisenberg group also

holds significance in the development of mathematical models used to study one-dimensional quantum

mechanical systems. For a comprehensive understanding of the Heisenberg group and its applications

in physics, please refer to the reference provided [3].

The Heisenberg group, is a three-dimensional Lie group that consists of real matrices of the form:
1 x z

0 1 y

0 0 1

 .

It is homeomorphic to the Lie group R3 through the following multiplication operation:

(x, y, z)(x̃, ỹ, z̃) = (x+ x̃, y + ỹ, z + z̃ − xỹ).

The Heisenberg group holds a significant position in the classification of Riemannian and pseudo-

Riemannian Lie groups, showcasing unique properties among three-dimensional Lie groups ([15, 17]).
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In the realm of physics, the concept of space-time emerges as a mathematical model that unifies

three spatial dimensions and one temporal dimension into a four-dimensional framework. This model,

known as a Lorentzian manifold in differential geometry, serves as a valuable tool for visualizing and

comprehending relativistic effects, particularly the diverse perceptions of events by different observers

in terms of location and timing.

Until the early 20th century, it was widely held that the three-dimensional geometry of the world,

encompassing locations, shapes, distances, and directions, existed separately from time, which mea-

sured the occurrence of events. However, the introduction of the Lorentz transformation and the

theory of special relativity revolutionized our understanding of space and time. In 1908, Hermann

Minkowski presented a groundbreaking geometrical interpretation, essentially a mathematical model,

that merged space and time into a four-dimensional framework. This framework, known as Minkowski

space, became the cornerstone of the theory of special relativity. Minkowski’s interpretation proved

pivotal in the development of the theory of general relativity, which posits that mass and energy induce

curvature in space-time. For further insights into Lorentzian manifolds and the broader concept of

pseudo-Riemannian manifolds, please refer to the reference [16].

Let (M, g) be a connected (pseudo-)Riemannian manifold. Let ∇ and R denote the Levi-Civita

connection and the curvature tensor of (M, g), respectively. A homogeneous (pseudo-)Riemannian

structure on (M, g) is a tensor field T of type (1, 2) on M such that the connection ∇̃ = ∇−T satisfies

the following relationships:

(1.1) ∇̃g = 0, ∇̃R = 0, ∇̃T = 0.

The following theorem clearly states the relationship between the presence of homogeneous structures

on a manifold and its homogeneity feature:

Theorem 1.1. [9] Let (M, g) be a connected (pseudo-)Riemannian manifold, simply connected and

complete. In this case, (M, g) admits a homogeneous (pseudo-)Riemannian structure if and only if it

is a reductive homogeneous pseudo-Riemannian manifold.

Certainly, a homogeneous structure T of this nature establishes a delivered decomposition of an

appropriate coset description of (M, g), and vice versa. It is crucial to recognize that distinct ho-

mogeneous structures on (M, g) can result in different representations of M as a coset space. A

comprehensive discussion of homogeneous structures and recent research findings in this field can be

found in the reference [6].

When T represents a homogeneous structure on (M, g), we utilize T to denote both the tensor field

of order (1, 2) and its metric equivalent tensor field of order (0, 3), which is defined by T (X,Y, Z) =

g(TXY,Z). We will employ this notation throughout our analysis.
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Let’s consider a fixed point x in M and an orthogonal base for the tangent space TxM . Let’s also

consider the vector space V = Rm equipped with the symmetric bilinear form ⟨ , ⟩ of the signature

(p, q) as a model for the space (TxM, gx). Now, let’s consider the tensor space S(V ) ⊂ ⊗3V ∗ whose

members have the usual symmetries of homogeneous structures (symmetries arising from the condition

∇̃g = 0). In fact,

S(V ) = {T ∈ ⊗3V |T (X,Y, Z) + T (X,Z, Y ) = 0}.

Given the condition that dim(M) ≥ 3, the space S(V ) can be decomposed into O(p, q)-indecomposable

and two-by-two orthogonal submodules as follows:

S(V ) = S1(V )⊕ S2(V )⊕ S3(V ),

where

S1 =
{
T ∈ S / T (X,Y, Z) = g(X,Y )φ(Z)− g(X,Z)φ(Y ), φ ∈ Ω1(M)

}
,

S2 =
{
T ∈ S / σX,Y,ZT (X,Y, Z) = 0, c12(T ) :=

n∑
i=1

εiT (ei, ei, ·) = 0
}
,

S3 =
{
T ∈ S / T (X,Y, Z) + T (Y,X,Z) = 0

}
.

In addition, σX,Y,Z denotes the cyclic summation to X,Y, Z. Homogeneous structures that belong

to one of the aforementioned submodules or to the direct sum of two of them possess specific meanings

and properties, notably:

• T ∈ S3 if and only if

(1.2) g([X,Y ]m, Z) + g([X,Z]m, Y ) = 0, ∀X,Y, Z ∈ m.

Naturally reductive homogeneous manifold (M = G/H, g) is defined with this property. In

this case, the geodesics corresponding to the Levi-Civita connection (M, g) and the canonical

connection of the delivery decomposition g = h⊕m are the same.

• T ∈ S1 ⊕ S2 if and only if σX,Y,ZT (X,Y, Z) = 0. In this case, we call (M, g) cyclic homoge-

neous. In the Riemannian case, the cyclic Lie groups and the cyclic homogeneous spaces were

studied in [10] and [11] references, respectively. However, the cyclic Lie groups from the fourth

dimension were investigated with Lorentzian sign in [7] and with neutral sign in [19].

• The projection of the homogeneous structure T on the subspaces S1, S2 and S3 are defined by

the following relations, respectively

p1(T )(x, y, z) =
1

2
⟨x, y⟩c12(T )(z)−

1

2
⟨x, z⟩c12(T )(y),

p2(T )(x, y, z) = (T − p1(T )− p3(T ))(x, y, z),

p3(T )(x, y, z) =
1

3
σx,y,zT (x, y, z).
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In the realm of Lorentzian groups, Heisenberg’s contributions gained prominence within the context

of nilpotent algebra classification in four dimensions. Magnin, as cited in reference [14], demonstrated

that up to isomorphism, only two non-Abelian Lie algebras exist in dimension four. These are denoted

as h3⊕ r and g4, corresponding to the Lie groups H3×R and G4, respectively. Subsequently, reference

[4] presented a classification of left invariant Lorentzian metrics up to isometries on these Lie groups.

The ensuing fundamental theorem serves as a cornerstone for this classification.

Theorem 1.2. [4] Every left invariant Lorentzian metric on the direct extension of the Heisenberg

group H3 × R up to automorphisms of H3 × R with respect to the basis {e1, · · · , e4} is isometric with

one of the metrics below

(1.3)

gµ =


1 0 0 0

0 −1 0 0

0 0 µ 0

0 0 0 1

 , 0 < µ ∈ R, gλ =


1 0 0 0

0 1 0 0

0 0 ελ 0

0 0 0 −ε

 , 0 < λ ∈ R, ε2 = 1,

g1 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , g2 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 ,

g3 =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 .

This theorem provides a suitable basis for the study of homogeneous structures. Here, it is impor-

tant to pay attention to the point that the Lie algebra corresponding to the direct extension of the

Heisenberg group, i.e. h3 × r in the above basis is [e1, e2] = e3. It is necessary to check the equations

related to homogeneous structures and determine the available solutions. We will discuss this issue in

the next section.

2. Main Results

In this section, we examine the equations related to homogeneous structures on different classes of

direct extensions of the Heisenberg group H3 × R from the Lorentz signature and fully classify the

homogeneous structures in each family.

Class (H3 ×R, gµ): Consider the direct extension H3 ×R equipped with the Lorentzian metric gµ

introduced in the relation (1.3). If we set Λi := ∇ei , using the famous Koszul formula, the Levi-Civita
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connection components are obtained as follows

(2.1)

Λ1 =


0 0 0 0

0 0 µ
2 0

0 1
2 0 0

0 0 0 0

 , Λ2 =


0 0 µ

2 0

0 0 0 0

−1
2 0 0 0

0 0 0 0

 ,

Λ3 =


0 µ

2 0 0
µ
2 0 0 0

0 0 0 0

0 0 0 0

 , Λ4 = 0.

Now, by using the relation Rij := R(ei, ej) = [∇ei ,∇ej ]−∇[ei,ej ], non-zero components of the curvature

tensor are calculated as

(2.2)

R12 =


0 −3

4µ 0 0

−3
4µ 0 0 0

0 0 0 0

0 0 0 0

 , R13 =


0 0 −1

4µ
2 0

0 0 0 0
1
4µ 0 0 0

0 0 0 0

 ,

R23 =


0 0 0 0

0 0 −1
4µ

2 0

0 −1
4µ 0 0

0 0 0 0

 .

The condition ∇R = 0 yields the unacceptable solution µ = 0, so this family is never symmetric.

Now suppose that T is a homogeneous structure with their usual symmetries on (H3 × R, gµ). The

components of ∇̃ = ∇− T can be calculated as follows

(2.3)

∇̃112 = −T112, ∇̃113 = −T113 ∇̃114 = −T114,

∇̃123 = −T123 +
µ
2 , ∇̃124 = −T124, ∇̃134 = −T134,

∇̃212 = −T212, ∇̃213 = −T213 − µ
2 ∇̃214 = −T214,

∇̃223 = −T223, ∇̃224 = −T224, ∇̃234 = −T234,

∇̃312 = −T312 − µ
2 , ∇̃313 = −T313 ∇̃314 = −T314,

∇̃323 = −T323, ∇̃324 = −T324, ∇̃334 = −T334,

∇̃412 = −T412, ∇̃413 = −T413 ∇̃414 = −T414,

∇̃423 = −T423, ∇̃424 = −T424, ∇̃434 = −T434.

According to the symmetries of T , clearly ∇̃g = 0. If we put Rijkl;r = (∇̃erR)ijkl, by performing

standard calculations, the non-zero components of the derivative of the curvature tensor with respect

to the connection ∇̃ are as below
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R1213;1 = −1
2µ(2T123 − µ), R1213;r = −Tr23µ, r = 2, 3, 4,

R1214;r = −3
4µTr24, r = 1, · · · , 4, R1223;2 = −1

2µ(2T213 + µ),

R1223;r = −Tr13µ, r = 1, 3, 4, R1224;r = −3
4µTr14, r = 1, · · · , 4,

R1314;r =
1
4µTr34, r = 1, · · · , 4, R1334;r = −1

4µ
2Tr14, r = 1, · · · , 4,

R2324;r = −1
4µTr34, r = 1, · · · , 4 R2334;r = −1

4µ
2Tr24, r = 1, · · · , 4.

Therefore, according to the condition ∇̃R = 0 and µ > 0, it gives

T123 =
µ
2 , T213 = −µ

2 , T223 = T323 = T423 = T113 = T313 = T413 = 0,

Tr14 = Tr24 = Tr34 = 0, r = 1, · · · , 4.

Now we proceed to the calculation of ∇̃T . If we put Tijk;l = (∇̃elT )ijk have

T212;1 = −T 2
112,T112;2 = −T 2

212,

which immediately results T112 = T212 = 0, according to the relation ∇̃T = 0. In this case, ∇̃T

becomes zero by itself, and therefore if we put T312 = κ and T412 = η, the homogeneous structure of

T will be obtained as follows

T = µ(e1 ⊗ e2 ∧ e3 − e2 ⊗ e1 ∧ e3) + 2κ(e3 ⊗ e1 ∧ e2) + 2η(e4 ⊗ e1 ∧ e2), κ, η ∈ R.

The projection of this homogeneous structure on the subspaces S1, S2 and S3 is as follows

p1(T ) = 0,

p2(T ) = 1
3(µ− 2κ)(e1 ⊗ e2 ∧ e3 − e2 ⊗ e1 ∧ e3)− 2

3η(e
1 ⊗ e2 ∧ e4 − e2 ⊗ e1 ∧ e4)

−2
3(µ− 2κ)e3 ⊗ e1 ∧ e2 + 4

3ηe
4 ⊗ e1 ∧ e2,

p3(T ) = 2
3(µ+ κ)(e1 ⊗ e2 ∧ e3 − e2 ⊗ e1 ∧ e3 + e3 ⊗ e1 ∧ e2)

+2
3η(e

1 ⊗ e2 ∧ e4 − e2 ⊗ e1 ∧ e4 + e4 ⊗ e1 ∧ e2).

According to the previous arguments, we state the following theorem.

Theorem 2.1. Let (H3 × R, gµ) be a direct extension of the Heisenberg group with the metric gµ

introduced in the relation (1.3). In this case, all homogeneous structures (H3 × R, gµ) are as follows:

T = µ(e1 ⊗ e2 ∧ e3 − e2 ⊗ e1 ∧ e3) + 2κ(e3 ⊗ e1 ∧ e2) + 2η(e4 ⊗ e1 ∧ e2), κ, η ∈ R,

where κ and µ are arbitrary real coefficients. Also, this homogeneous structure belongs to the class

S3 when µ = η − 2κ = 0 and belongs to the class S2 when η = µ+ κ = 0. Otherwise, it is of the type

S2 ⊕ S3. Also, there is no canonical homogeneous structure (i.e., ∇̃ = 0).

In accordance with similar arguments, the subsequent theorems present a comprehensive catego-

rization of homogeneous structures throughout the direct extensions of the Heisenberg group.
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Theorem 2.2. Let (H3 × R, gλ) be a direct extension of the Heisenberg group with the metric gλ

introduced in the relation (1.3). In this case, all homogeneous structures (H3 × R, gλ) are as follows

T = ελ(e1 ⊗ e2 ∧ e3 − e2 ⊗ e1 ∧ e3) + 2κ(e3 ⊗ e1 ∧ e2) + 2η(e4 ⊗ e1 ∧ e2), κ, η ∈ R.

where κ, η are arbitrary real coefficients. Also, this homogeneous structure belongs to the class S3 when

η = ελ − 2κ = 0 and belongs to the class S2 when η = ελ + κ = 0 and otherwise it is of the type

S2 ⊕ S3. Also, there is no canonical homogeneous structure (i.e., ∇̃ = 0).

Theorem 2.3. Let (H3 × R, g1) be a direct extension of the Heisenberg group with the metric g1

introduced in the relation (1.3). In this case, all homogeneous structures (H3 × R, g1) are in one of

the following families

(i)

T = 2κ(e1 ⊗ e2 ∧ e4 − e2 ⊗ e1 ∧ e4 + e4 ⊗ e1 ∧ e2), 0 ̸= κ ∈ R.

This family of homogeneous structures always belongs to the class S3.

(ii)

T = −(e1 ⊗ e2 ∧ e4 + e2 ⊗ e1 ∧ e4 − e4 ⊗ e1 ∧ e2) + 2κe4 ⊗ e1 ∧ e4 + 2ηe4 ⊗ e2 ∧ e4, κ, η ∈ R.

This family of homogeneous structures belongs to the class S3 when κ = η = 0 and otherwise

they are members of the class S2 ⊕ S3.

(iii)

T = (e1 ⊗ e2 ∧ e4 − e2 ⊗ e1 ∧ e4) + 2κe3 ⊗ e1 ∧ e2 + 2ηe4 ⊗ e1 ∧ e2, κ, η ∈ R.

This family of homogeneous structures belongs to the class S2 when κ = η+1 = 0 and belongs

to the class S3 when κ = 1 − 2η = 0 and Otherwise, they are members of the class S2 ⊕ S3.

Also, this homogeneous structure is canonical whenever κ = 1 + 2η = 0.

Suppose we equip the direct extension H3 × R to the metric g2 in the relation (1.3). In this case,

the components of Levi-Civita connection will be as follows

(2.4) Λ1 = Λ3 = Λ4 = 0, Λ2 =


0 1 0 0

0 0 0 0

−1 0 0 0

0 0 0 0

 .

Here, with straightforward calculations, it can be shown that R ≡ 0 and therefore this family of direct

extensions of the Heisenberg group is flat. Therefore, the only remaining equation of the relation (1.1)

for homogeneous structures is the relation ∇̃T = 0. The family of homogeneous structures for flat

spaces is relatively large. In fact, a flat tunnel is isometric with Rn and its standard metric, therefore,

in this study, we skip this obvious state (flat state) and study the next family.
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Theorem 2.4. Let (H3 × R, g3) be a direct extension of the Heisenberg group with the metric g3

introduced in the relation (1.3). In this case, all homogeneous structures (H3 × R, g3) are in one of

the following families

(i)

T = (e1 ⊗ e2 ∧ e3 − e2 ⊗ e1 ∧ e3) + 2κe2 ⊗ e1 ∧ e2 + 2ηe3 ⊗ e1 ∧ e2, κ, η ∈ R.

This family of homogeneous structures belongs to the class S3 when κ = η − 1
2 = 0 and also

belongs to the class S2 when η = −1 and otherwise The member faces of the class S2 ⊕S3 are

Also, canonical homogeneous structures arise whenever κ = η + 1
2 = 0.

(ii)

T = e1 ⊗ e2 ∧ e3 + 2κe2 ⊗ e1 ∧ e2 − e2 ⊗ e1 ∧ e3 + 2ηe2 ⊗ e2 ∧ e3 + e3 ⊗ e1 ∧ e2, η, κ ∈ R.

This family of homogeneous structures belongs to the class S3 when κ = η = 0 and otherwise

they are members of the class S2 ⊕ S3.

3. Conclusions

In this paper, we examined the direct extensions of the three-dimensional Heisenberg group, namely

H3 × R. We equipped the aforementioned extension, which is naturally four-dimensional, with the

Lorentzian metric. According to prior research, this family of extensions of the Heisenberg group

up to isometric classes falls within one of the five families specified in the 1.3 theorem. Therefore,

we employed a computational approach to study each family of Lorentzian metrics individually and

verified the equations pertaining to homogeneous structures. We systematically solved these equations

and identified all feasible solutions. The outcomes of this classification of homogeneous structures

were articulated in theorems 2.1, 2.2, 2.3, and 2.4. It is noteworthy that during the investigation, we

discovered that the direct extensions of the Heisenberg group with the metric class g2 are flat.

As mentioned in reference [8], Proposition 2-2, the Lorentzian simply connected Lie groups are

equivalent to the Riemannian simply connected Lie groups of the same dimension. Therefore, this

research focuses on investigating homogeneous structures on the special case of direct extension in

the class family ii2 of the classification presented in Proposition 2-1 of the aforementioned reference.

Future studies may explore homogeneous structures on other classes of Lorentzian Lie groups of the

fourth dimension.
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