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Abstract. Over the last decade or so, wavelets have had a growing impact on signal processing theory

and practice, both because of their unifying role and their successes in applications. Filter banks, which

lie at the heart of wavelet-based algorithms, have become standard signal processing operators, used

routinely in applications ranging from compression to modems. The contributions of wavelets have

often been in the subtle interplay between discrete-time and continuous-time signal processing. The

purpose of this article is to look at recent wavelet advances from a signal processing perspective.

In particular, approximation results are reviewed, and the implication on compression algorithms is

discussed. New constructions and open problems are also addressed. Finding a good basis to solve a

problem dates at least back to Fourier and his investigation of the heat equation. The series proposed

by Fourier has several distinguishing features: The series is able to represent any finite energy function

on an interval. The basis functions are eigenfunctions of linear shift invariant systems or, in other

words, Fourier series diagonalize linear, shift invariant operators.

1. Introduction

Finding a good basis to solve a problem dates at least back to Fourier and his investigation of the

heat equation [8]. The series proposed by Fourier has several distinguishing features:

• The series is able to represent any finite energy function on an interval.
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• The basis functions are eigenfunctions of linear shift invariant systems or, in other words,

Fourier series diagonalize linear, shift invariant operators.

Assume we have a space of functions S and we wish to represent an element f ∈ S. The space Scan

be, for example, integrable functions on the interval [0, 1] with finite square integral

(1.1)

∫ 1

0
|f(t)|2dt <∞,

which we denote L2(0, 1). The first question is then to find a basis for S, that is a set of basis functions

{φi}i∈I in S such that any element f ∈ S can be written as a linear combination

(1.2) f =
∑
i∈I

aiφi.

The example closest to the heart of signal processing people is certainly the expansion of bandlimited

functions in terms of the sinc function. Given the representation of f in an orthonormal basis as in

formola, its orthogonal projection into a fixed subspace of dimension N spanned by{φn}n=0,...,N−1 is

denoted f̂N (t)

(1.3) f̂N =

N−1∑
n=0

⟨φn, f⟩φn.

Given objects of interest and spaces in which they are embedded, we wish to know how fast an N-term

approximation converges

(1.4) ∥f(t)− fN (t)∥2 ∼ fct(N),

where fN (t) stands for an approximation of f(t) which involves N elements, to be chosen appropri-

ately. This immediately raises a number of questions. Different bases can give very different rates of

approximation. Then, there are various ways to choose the N terms used in the approximation. A

fixed subset (e.g., the first N terms) leads to a linear, subspace approximation as in (1.3). Adaptive

schemes, to be discussed later, are nonlinear. Will different choices of the subset lead to different rates

of approximation? Such questions are at the heart of approximation theory and are relevant when

choosing a basis and an approximation method for a given signal processing problem. For example,

denoising in wavelet bases has led to interesting results for piecewise smooth signals precisely because

of the superior approximation properties of wavelets for such signals. We are now ready to address

the last problem we shall consider, namely the compression problem. This involves not only approx-

imation quality, but also description complexity. There is a cost associated with describingfN , and

this cost depends on the approximation method. Typically, the coefficient values and their locations

need to be described, which involves quantization of the coefficients and indexing their locations.
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2. Orthogonal Filter Banks

When thinking of filtering, one usually thinks about frequency selectivity. For example, an ideal

discrete-time lowpass filter with cut-off frequency ωc < π takes any input signal and projects it onto

the subspace of signals bandlimited to [−ωc, ωc]. Orthogonal discrete-time filter banks perform a

similar projection which we now review. Assume a discrete-time filter with finite impulse response

g0[n] = {g0[1], g0[1], g0[L− 1]}, L even, and the property

(2.1) ⟨g0[n], g0[n− 2k]⟩ = δk,

that is, the impulse response is orthogonal to its even shifts, and ∥g0∥2 = 1. Denote by G0(z) the

z-transform of the impulse response g0[n]

(2.2) G0(z) =

L−1∑
n=0

g0[n]z
−n,

with an associated region of convergence covering the z-plane except the origin. Assume further that

g0[n] is a lowpass filter, that is, its discrete-time Fourier transform has most of its energy in the region

[−π/2, π/2]. Then define a high-pass filter g1[n] with z-transform G1(z) as follows:

(2.3) G1(z) = z−L+1G0(−z−1).

3. Discrete-Time Polynomials and Filter Banks

Signal processing specialists intuitively think of problems in terms of sinusoidal bases. Approx-

imation theory specialists think often in terms of other series, like the Taylor series, and thus, of

polynomials as basic building blocks. We now look at how polynomials are processed by filter banks.

A discrete-time polynomial signal of degreeM is composed of a linear combination of monomial signals

(3.1) ρ(m)[n] = nm, 0 ≤ m ≤M.

We shall now see that such monomial (and therefore polynomial) signals are eigensignals of certain

multirate operators. We need to consider lowpass filters G0(z) that have a certain numberN > 0 of

zeroes at z = 1, or ω = π on the unit circle. That is, the filter factors as

(3.2) G0(z) = (1 + z−1)NR0(z).

Clearly, because of (2.3), the highpass G1(z) has N zeros at z = 1 or (ω = 0), while H0(z) and H1(z)

have N zeros at z= 1 and 1, respectively because of formoula.
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4. Continuous-Time Polynomials and Wavelets

As is well known, a strong link exists between iterated filter banks and wavelets. For example,

filter banks can be used to generate wavelet bases[4], and filter banks can be used to calculate wavelet

series [9]. It comes thus as no surprise that the properties seen in discrete time regarding polynomial

representation carry over to continuous time. While these properties are directly related to moment

properties of wavelets and thus hold in general, we review them in the context of wavelets generated

from orthogonal finite impulse response (FIR) filter banks. Assume again that the lowpass filter has

N zeros at ω = π, and thus, the highpass has N zeros at ω = 0. From the two scale relation of scaling

function and wavelet, we get that the Fourier transform of the wavelet can be factored as

(4.1) Ψ(w) =
1√
2
G1(l

jw/2)·ϕ
(w
2

)
.

where ϕ(w) is the Fourier transform of the scaling function.

5. Discontinuities in Filter Bank and Wavelet Representations

What happens if a signal is discontinuous at some point t0 ? we know that Fourier series do not

like discontinuities, since they destroy uniform convergence. Wavelets have two desirable properties

as far as discontinuities are concerned. First, they focus locally on the discontinuity as we go to finer

and finer scales. That is because of the scaling relation of wavelets, where the function set Ψm,n(t) is

defined as

(5.1) ψm,n(t) = 2−m/2ψ(2−mt− n) m,n ∈ Z

where m → −∞ corresponds to fine details. Thus, as m grows negative, the wavelet becomes

“sharper.” If the discontinuity is isolated, and the surroundings are smooth, all wavelet inner products

except the ones at the discontinuity will be zero, and around the discontinuity,L1inner products are

different from zero when the wavelet has support length L. Second, the magnitude evolution across

scales of the nonzero wavelet inner products characterizes the discontinuity. This is a well-known char-

acteristic of the continuous wavelet transform [5, 10] and holds as well for the orthonormal wavelet

series.

6. Linear Approximation

Assume a spaceV and an orthonormal basis {gn}n∈N for V . Thus, a function f ∈ V can be written

as a linear combination

(6.1) f =
∑
n∈N

⟨gn, f⟩gn.
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The best (in the squared error sense) linear approximation of f in the subspaceV , denoted as f̂ ,

is given by the orthogonal projection of f onto a fixed subspace of V (see (1.3)). Assume it is a

subspaceW of dimension M, and spanned by the first M vectors of the basis, or

W = span{g0, g1, g2, . . . , gM−1}

. Then f̂ is given by

(6.2) f̂M =
M−1∑
n=0

⟨gn, f⟩gn.

and the squared error of the approximation is

ε̂ = ∥f − f̂∥22 =
∞∑

n=M

|⟨gn, f⟩|2.

Because the subspaceW is fixed, independent of f , the approximation is linear.

7. Nonlinear Approximation in Orthonormal Bases

Consider the same set up as above, but with a different approximation rule. Instead of (6.1) ,

where the firstM coefficients in the orthonormal expansion are used, we keep theM largest coefficients

instead. That is, we define an index set IM of the M largest inner products, or

(7.1) |⟨gm, f⟩| ≥ |⟨gn, f⟩|, m ∈ Im, n /∈ Im.

Then, we define, the best nonlinear approximation as:

(7.2) f̂M =
∑
n∈IM

⟨gn, f⟩gn

which leads to an approximation error

ε̃M = ∥f − f̃∥22 =
∑
n∈IM

|⟨gn, f⟩|2

Clearly

(7.3) ε̃M ≤ ε̂M .

(We could call this adaptive linear approximation or adaptive subspace approximation. However,

the commonly used term is nonlinear approximation. More general nonlinear schemes could also be

considered, but are beyond the scope of this article.)
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8. Nonlinear Approximation and Compression

So far, we have considered keepingM elements from a basis, either a fixed set (the firstM typically)

or an adaptive set (corresponding to the largest projection). In compression, we have first to describe

the coefficient set, which has zero cost when this set is fixed (linear approximation) but has a nontrivial

cost when it is adaptive (nonlinear approximation). In that case, there are
(
N
M

)
possible subsets, and

the rate to describe the subset is equal to the entropy of the distribution of the subsets, or at most

(8.1) log2

(
N

M

)

9. Compression of Piecewise Polynomial Signals

Let us return to one-dimensional piecewise smooth signals. Wavelets are well suited to approximate

such signals when nonlinear approximation is allowed. To study compression behavior, consider the

simpler case of piecewise polynomials, with discontinuities. To make matters easy, let us look again at

the signal we used earlier to study nonlinear approximation, but this time include quantization and

bit allocation. A simple analysis of the approximate rate distortion behavior of a step function goes

as follows. Coefficients decay as 2m/2, so the number of scalesJ involved, if a quantizer of size ∆ is

used, is of the order of log2(1/∆). The number of bits per coefficient is also of the order of log2(1/∆),

so the rate R is of the order

(9.1) R ∼ log22 (1/∆) ∼ J2

The distortion or squared error is proportional to ∆2 (for each coefficient), times the number of scales

or, using ∆ = 2−J

(9.2) D ∼ J · 2−J .

Using (9.1), we get

(9.3) DW (R) = C1·
√
R· 2C2

√
R.

for the distortion-rate behavior of a wavelet scheme. Note that we ignored the cost of indexing the

location. This cost turns out to be quite small (order J), because the coefficients are all gathered

around the discontinuity.

10. True Two-Dimensional Bases

As the wavelet example shows, separable bases are not suited for “true” two-dimensional objects.

What is needed are transforms and bases that include some form of “geometry” and that are truly

two dimensional. (The notion of geometry is not easy to formalize in our context, but the intuition

is that the dimensions are not independent, and certain shapes are more likely than others.) Besides

48 http://dx.doi.org/10.22108/msci.2024.137864.1581

http://dx.doi.org/10.22108/msci.2024.137864.1581


M. Vetterli, Translator: S. Abdi, A. Azizi et al/Journal of Mathematics and Society/ 9 no. 3 (2024) 35-79

the two-dimensional Fourier and wavelet transforms, which are both separable, the Radon transform

plays a key role. This transform, studied early in the 20th century [12], was rediscovered several times

in fields ranging from astronomy to medical imaging (see [6] for an excellent overview). The Radon

transform maps a function f(x, y) into RAf (θ, t) by taking line integrals at angle θ and location t

(10.1) RAf (θ, t) =

∫∫
f(x, y)δ(x cos θ + y sin θ − t)dxdy

A key insight to construct directional bases from the Radon transform was provided by Candès and

Donoho [2, 3] , with the ridgelet transform. The idea is to map a one-dimensional singularity, like a

straight edge, into a point singularity using the Radon transform. Then, the wavelet transform can

be used to handle the point singularity.

11. Directional Filter Banks

To get directional analysis, one can alternatively use directional filter banks[1]. In such a case,

the basis functions are given by the filter impulse responses and their translates with respect to the

subsampling grid. Such filter banks can be designed directly, or through iteration of elementary filter

banks. They lead to bases if critically subsampled, or frames if oversampled.

12. Two-Dimensional Bases and Compression

As we had seen in one dimension, a good N -term approximation is not yet a guarantee for good

compression. While a powerful N -term approximation is desirable, it must be followed by appropriate

compression. Thus, the topic of compression of two-dimensional piecewise smooth functions is still

quite open. Several promising approaches are currently under investigation, including compression in

ridgelet and curvelet domain, compression along curves using “bandelets”[11] and generalization of

footprints in two dimensions or edgeprints [7].

13. Conclusions

The interplay of representation, approximation, and compression of signals was reviewed. For

piecewise smooth signals, we showed the power of wavelet-based methods, in particular for the one-

dimensional case. For two-dimensional signals, where wavelets do not provide the answer for piecewise

smooth signals with curve singularities, new approaches and open problems were indicated. Such

approaches rely on new bases with potentially high impact on image processing, for such problems as

denoising, compression and classification.
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faltigkeiten, Berichte Sächsische Akademie der Wissenschaften, Leipzig, (1917) 262–267.

Sarkout Abdi

Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran

Aram Azizi

Department of Mathematics, Payame Noor University, P.O. Box 19395-3697 Tehran, Iran

Email:a.azizi@pnu.ac.ir

Mahmoud Shafiee

Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran

Jamshid Saeidian

Faculty of Mathematical Sciences and Computer, Kharazmi University, 50 Taleghani avenue, Tehran 1561836314, Iran

50 http://dx.doi.org/10.22108/msci.2024.137864.1581

http://dx.doi.org/10.22108/msci.2024.137864.1581

	1. Introduction
	2. Orthogonal Filter Banks
	3. Discrete-Time Polynomials and Filter Banks
	4. Continuous-Time Polynomials and Wavelets
	5. Discontinuities in Filter Bank and Wavelet Representations
	6. Linear Approximation
	7. Nonlinear Approximation in Orthonormal Bases
	8. Nonlinear Approximation and Compression
	9. Compression of Piecewise Polynomial Signals
	10. True Two-Dimensional Bases
	11. Directional Filter Banks
	12. Two-Dimensional Bases and Compression
	13. Conclusions
	References

