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TOPOLOGY OF 3-DIMENSIONAL MANIFOLDS

EAMAN EFTEKHARY

Abstract. This is the second paper from a trio which reviews some of the progress in low dimensional

topology in the past century. Starting with the work of Poincaré in the last years of 19th century and first

few years of 20th century, we review the major steps in putting 3-manifolds and their algebraic topology

in a solid mathematical framework, and the important theorems which strengthened the understand-

ing of 3-manifolds, including the prime decomposition theorem and JSJ decomposition of 3-manifolds.

Highlighting the significance of hyperbolic 3-manifolds, proving the monster theorem and formulating

the geometrization conjecture by Thurston has been a turning point in 3-manifold topology. The proof

of geometrization conjecture by Perelman, using Ricci flow of Hamilton, affirmed that the fundamental

group is an almost perfect invariant of closed 3-manifolds. Yet, it is not clear how geometric properties

are reflected in the fundamental group, and its is difficult to verify whether two group presentations

give isomorphic fundamental groups or not. Alternative approaches to the study of 3-manifolds and

4-dimensional cobordisms between them using abelian groups include, in particular, the theories which

are formulated as topological quantum field theories (TQFTs). These approaches are also reviewed in

the paper. In particular, a theorem of the author which addresses the strength of the later invariants in

distinguishing 3-manifolds from the standard 3-sphere is discussed.

1. Introduction

The current paper focuses on the development of 3-manifold topology, which was basically initiated by

celebrated papers of Poincaré in the last few years of 19th century [39, 40, 41, 42, 43, 44]. The manifolds

studied by Poincaré were all smooth closed submanifold of the Euclidean space. The formulation of

manifolds as abstract topological spaces lasted for another couple of decades. In fact, agreement on the
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“correct” definition of a manifold did not happen until after Whitney proved his embedding theorems

[53]. The work of Poincaré initiated what is called “algebraic topology” today. Nevertheless, the

construction of a rigorous language and the solid infrastructure for algebraic topology needed more time

and happened in the first half of 20th century.

Poincaré conjecture motivated some of the most important developments of low dimensional topology

in 20th century. The other critical development in 20th century was the study of hyperbolic 3-manifolds

and the formulation of the “geometrization conjecture” by Thurston. The proof of the latter conjecture

by Perelman in the beginning of 21st century [36, 38, 37] gave a very useful and effective understanding

of closed 3-manifolds. We review the major steps in the aforementioned development. Moreover, a

section is devoted to the progress in low dimensional topology which resulted from the introduction of

gauge theory and topological quantum fields theories. In particular, one of the results of the author,

which links the gauge theoretic invariants to the geometrization of 3-manifolds is discussed in the last

section of the paper.

2. Main Results

The study of smooth manifolds by means belonging to “algebraic topology” was initiated by Poincaré,

who published a series of 6 papers between 1899 and 1904, under the title “anaysis situs”. He introduced

the homology groups and the fundamental groups as tools for distinguishing manifolds from one another,

and formulated what we know as Poincaré duality. The formulation of the following conjecture was

perhaps the most motivating part of his papers:

Conjecture 2.1. Suppose that M is a closed, connected and oriented 3-manifold with trivial fundamen-

tal group. Then there is a homeomorphism from M to S3.

In 1911 and 1912, Herman Weyl suggested a definition of an abstract manifold, while the equivalence

of his definition and the definition used by Poincaré was not proved until the middle of 20th century.

Two theorems are crucial for this equivalence. One of them is due to Moise [25] (proved in 1952) and

the other one is due to Whitney (proved in 1936) [53].

Theorem 2.2 (Whitney embedding). For every positive integer m and every smooth Hausdorff m-

manifold M which is of second category, there is an embedding of M in the Euclidean space R2m+1.

Moreover, every continuous map f : M → N from a smooth m-dimensional manifold M to a smooth

n-dimensional manifold N may be approximated by arbitrarily close smooth embeddings if n > 2m.

Theorem 2.3 (Moise). Let M be a topological 3-manifold. Then M admits a maximal smooth atlas,

giving a smooth structure on M . Moreover, every two such maximal smooth atlases are equivalent.

A number of historic errors in the proof of some intuitively clear statements persuaded mathematicians

that a rigorous language is needed for working with manifolds. Dehn lemma is a good example. It was

first stated and proved (with a gap) by Dehn in 1910 [1]. The gap was noticed by Kneser in 1929 [18],
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and a complete proof was not given until 1957, when Papakyriakopoulos (Papa) proved the following

stronger version [34, 35]:

Theorem 2.4 (loop theorem). Suppose that M is a compact 3-manifold with boundary and that γ :

S1 → M be a loop which is embedded on its boundary which represents a non-trivial element of π1(∂M),

while its image in π1(M) is trivial. Then, there is a proper embedding

f : (D, ∂D) → (M,∂M)

from the standard 2-disk D to M , such that the image of ∂D in π1(∂M) is non-trivial.

The proof of Papa also implied the “sphere theorem”. Kneser took the first step in this direction by

proving the following theorem in 1929 [18]:

Theorem 2.5 (Kneser). Let M be a closed 3-manifold. Then, there is a finite sequence

M = M1, . . . ,Mn = M ′

of closed (possibly not connected) 3-manifolds such that Mi+1 is obtained from Mi by reducing along a

2-sphere, while every connected component of M ′ is irreducible.

The proof of Kneser theorem also implies the “prime decomposition theorem” for closed 3-manifolds:

Theorem 2.6 (prime decomposition theorem for 3-manifolds). Let M be a closed oriented 3-manifold

which is not homeomorphic to S3. Then, there are non-trivial prime 3-manifolds M1, . . . ,Mn such that

M is homeomorphic to M1# . . .#Mn. Moreover, if M ≃ M ′
1# . . .#M ′

m is another prime decomposition

of M , then m = n and there is a permutation σ ∈ Sn such that Mi ≃ M ′
σ(i).

Moreover, a conjecture of Kneser was eventually proved by Stallings in 1959 [49, 50]:

Theorem 2.7 (prime decomposition theorem for 3-manifolds). Let M be a closed connected oriented

3-manifold and assume that

π1(M) = G1 ⋆ G2 ⋆ · · · ⋆ Gn

where G1, . . . , Gn are non-trivial groups. Then there are closed 3-manifolds M1, . . . ,Mn such that π1(Mi)

is isomorphic to Gi and M ≃ M1# . . .#Mn.

Moreover, the importance of Seifert fibered 3-manifolds, which were introduced by Seifert in his PhD

thesis, was noticed by several mathematicians. In particular, the following theorem was independently

proved by Jaco-Shalen [15] and Johanson [17]:

Theorem 2.8 (JSJ decomposition). Let M be a closed irreducible 3-manifold. Then there is a minimal

set of incompressible tori in M such that every connected component of their complement is either

atoroidal or Seifert fibered. Moreover, this minimal set of incompressible tori is unique up to isotopy.
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A turning point in 3-manifold topology was the work of Thurston which highlighted the importance of

hyperbolic manifolds. The following theorem of Mostow implies that hyperbolic structure in dimension

3, if it exists, is determined by the topology:

Theorem 2.9 (Mostow rigidity). Let (M1, g1) and (M2, g2) be two complete hyperbolic n-manifolds, with

n > 2, and ı : π1(M1) → π1(M2) be an isomorphism. Then there is an isometry f : (M1, g1) → (M2, g2)

such that f∗ : π1(M1) → π1(M2) gives the isomorphism ı.

Despite the initial misconception that hyperbolic manifolds are “rare”, Thurston gave significant

evidence that they are quite “common” [51]:

Theorem 2.10 (Thurston hyperbolic surgery). Let M be a hyperbolic manifold with toroidal boundary

and finite volume. Then only finitely many Dehn fillings of M are non-hyperbolic.

More importantly, Thurston proved the following theorem in 1982:

Theorem 2.11 (Thurston monster theorem). Let M be a compact irreducible atoroidal Haken 3-

manifold such that χ(∂M) = 0. Then the interior of M may be equipped with a complete hyperbolic

metric, so that the volume of M with respect to this volume form is finite.

Thurston also formulated his “geometrization conjecture” which provides a very effective understand-

ing of 3-manifolds. His conjecture, which implies the Poincaré conjecture as a very special case, remained

open for more than 20 more years, until Perelman provided the first proof [36, 38, 37]:

Theorem 2.12 (Thurston geometrization conjecture-Perelman theorem). Let M be an irreducible closed

3-manifold and M1, . . .Mn be the components of its JSJ decomposition. Then every Mi is either Seifert

fibered or hyperbolic (with finite volume).

As a corollary of the above theorem, the following may be proved:

Theorem 2.13. Let M1 and M2 be closed irreducible 3-manifolds such that π1(M) and π1(M2) are

isomorphic. Then either M1 and M2 are homeomorphic, or they are both lens spaces.

3. Conclusions

As the progress of 3-manifold topology indicates, and in particular Theorem 2.13 and Theorem 2.7

imply, the fundamental group of a 3-manifold is a very strong invariant which distinguishes many

three-manifolds from each other. Nevertheless, it is usually a very hard problem to decide whether

two presentations give isomorphic groups or not. Moreover, it is not clear how different geometric and

topological properties are reflected in the fundamental group. Therefore, the resolution of geometrization

conjecture did not close the study of low dimensional manifolds. Gauge theory has probably been the

source of the most powerful alternative approach. It was initiated by the work of Floer [7, 8, 11, 10, 9, 12],

which paved the way for the introduction of topological quantum field theories (TQFTs), and the
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introduction of instanton Floer theory and Seiberg-Witten theory. Ozsváth and Szabó introduced a

similar theory in 2001 [32, 31, 33]. Kutluhan, Lee and Taubes proved that instanton Floer homology and

Ozsváth-Szabó Floer homology (also called Heegaard-Floer homology) are equivalent [20, 21, 22, 23, 24].

We may thus turn our attention to Ozsváth-Szabó invariants. The theory associates the groups

ĤF(M),HF+(M),HF−(M),HF∞(M) to a 3-manifold M and the maps

Φ•
W : HF•(M1) → HF•(M2), ∀ • ∈ {+,−,∞,∧}

for every cobordism W from M1 to M2. The groups and the maps respect the corresponding decompo-

sitions according to Spinc structures. They reflect many interesting properties, and several applications

of these invariants are mentioned in the last section of the paper.

The hat theory (i.e. the groups ĤF(M)) are the most convenient versions of the theory. It is an

abelian group which may be computed combinatorially (i.e. using a computer). Yet, it is conjectured

that it is relatively powerful in distinguishing 3-manifolds from S3:

Conjecture 3.1 (Ozsváth-Szabó). Let M be a prime closed 3-manifold and assume that ĤF(M) =

ĤF(S3) = Z. Then M is homeomorphic to either S3 or the Poincaré homology sphere P .

The best result in the direction of Conjecture 3.1 is the following theorem of author [6], which is

proved based on [5] and [4]:

Theorem 3.2. Let M be a prime closed 3-manifold and assume that ĤF(M) = ĤF(S3) = Z. Then M

is homeomorphic to either S3 or the Poincaré homology sphere P , or M is hyperbolic.
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[26] J. Morgan and G. Tian, Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs, 3, American

Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007
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