حسابان کسری از نظریه تا کاربرد

نوع مقاله: مقاله علمی

نویسنده

دانشگاه یزد- دانشکده علوم ریاضی-بخش ریاضیات کاربردی

چکیده

در این مقاله، ابتدا به معرفی حسابان کسری شامل تعریف مشتق و انتگرال کسری و روابط حاکم بر آن‌ها، شباهت‌ها و تفاوت‌های حسابان کسری با حسابان کلاسیک و تعبیر هندسی مشتق و انتگرال کسری می‌پردازیم. سپس کاربردهایی از حسابان کسری و معادلات دیفرانسیل کسری را ارائه می‌دهیم.

کلیدواژه‌ها


[1] M. H. Akrami and G. H. Erjaee, Examples of analytical solutions by means of Mittag-Leffler function of fractional Black-Scholes option pricing equation, Fract. Calc. Appl. Anal., 18 (2015) 38–47.

[2] A. A. M. Arafaa, S. Z. Ridab and M. Khalil, A fractional-order model of HIV infection with drug therapy effect, J. Egypt. Math. Soc., 22 (2014) 538–543.

[3] I. Area, H. Batarfi, J. Losada, J. J. Nieto, W. Shammakh and A. Torres, On a fractional order Ebola epidemic model, Adv. Difference Equ., 2015 (2015).

[4] K. Assaleh and W. M. Ahmad, Modeling of speech signals using fractional calculus, 9th International Symposium on Signal Processing and Its Applications, 2007 1–4.

[5] M. Caputo, Linear model of dissipation whose Q is almost frequency independent-II, Geophys. J. R. Astron. Soc., 13 (1967) 529–539.

[6] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010.

[7] Y. Ding, Haiping Ye, A fractional-order differential equation model of HIV infection of CD۴+ T-cells, Math. Comput. Mod-elling, 50 (2009) 386–392.

[8] O. S. Iyiola and F. D. Zaman, A fractional diffusion equation model for cancer tumor, AIP Adv., 4 (2014) 107–121.

[9] R. Gorenflo, A. A. Kilbas, F. Mainardi and S.V. Rogosin, Mittag-Leffler functions, related topics and applications, Springer-Verlag, Berlin Heidelberg, 2014.

[10] G. Jumarie, Fractional Brownian motions via random walk in the complex plane and via fractional derivative, Comparison and further results on their Fokker–Planck equations, Chaos, Solitons and Fractals, 22 (2004) 907–925.

[11] G. Jumarie, Modified Riemann-Liouville Derivative and Fractional Taylor Series of Non-differentiable Functions Further Results, Comput. Math. Appl., 51 (2006) 1367–1376.

[12] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier B. V., Amsterdam, 2006.

[13] V. V. Kulish and J. L. Lage, Application of Fractional Calculus to Fluid Mechanics, J. Fluids Eng, 124 (2002) 803–807.
[14] C. Li and F. Zeng, Numerical Methods for Fractional Calculus, CRC press, New York, 2015.

[15] K. S. Miller and B. Ross., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.

[16] S. T. Mohyud-Din, A. Ali and B. Bin-Mohsin, On biological population model of fractional order, Int. J. Biomath., 9 (2016) pp. 13.

[17] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego and London, 1999.

[18] I. Podlubny, Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation, Frac. Calc. App. Anal., 5 (2002) 367–386.

[19] F. A. Rihan, On Fractional Order Cancer Model, J. Fractional CalcAppl, 3 (2012) 1–6.

[20] B. Ross, The development of fractional calculus 1695-1900, Historia Math., 4 (1977) 75–89.

[21] N. Sebaa, Z. E. A. Fellah, W. Lauriks and C. Depollier, Application of fractional calculus to ultrasonic wave propagation in human cancellous bone, Signal Processing, 86 (2006) 2668–2677.

[22] ز. خاتمی ‏و ی. علیزاده، دیفرانسیل و انتگرال از مرتبه کسری، ‎فرهنگ و اندیشه ریاضی‏، ‎29‎‏ ۱۳۸۱‏ 30--17.