در ستایش دیوید ریس

نوع مقاله: مقاله ترجمه ای

نویسندگان

1 دانشجوی دکتری

2 دانشگاه کردستان

چکیده

دیوید ریس در سه حوزۀ کاملاً متفاوت برجسته بود. باتوجه به تحقیقات برجستهٔ دیوید در نیم‌گروه‌های ماتریسیِ ریس، قضیه ریس و خارج قسمت‌های ریس، می‌توان وی را یکی از پیشگامان نظریۀ نیم‌گروه‌ها دانست. همچنین او یکی از چهره‌های پیشرو در توسعهٔ جبر جا‌بجایی در دوران پس از جنگ بود. سرانجام، کار رمزگشایی‌ وی در بلچی پارک در خلال جنگ جهانی دوّم، بیشترِ توجّهات را به خود جلب کرد. به همین دلیل، هنگام درگذشت دیوید مطبوعات بریتانیا با چاپ آگهی‌هایی، با احترام فراوان از وی یاد کردند. در این مقاله تلاش نموده‌ایم با بررسی همهٔ جنبه‌های مهمّ زندگی شخصی و کاری او، عمق و نتایج اصلی نظریه‌هایش را بیان کنیم.

کلیدواژه‌ها


[1] D. Rees, On semi-groups, Proc. Cambridge Philos. Soc., 36 (1940) 387–400.

[2] D. Rees, Note on semi-groups, Proc. Cambridge Philos. Soc., 37 (1941) 434–435.

[3] D. Rees, Note on a paper of I. J. Good, J. London Math. Soc., 21 (1946) 169–172.

[4] D. Rees, On the group of a set of partial transformations, J. London Math. Soc., 22 (1947) 281–284.

[5] D. Rees, On the ideal structure of a semi-group satisfying a cancellation law, Quart. J. Math. Oxford Ser., 19 (1948) 101–108.

[6] D. Rees, Linear systems of algebras, Ann. of Math. (2), 51 (1950) 123–160.

[7] D. Rees, The nuclei of non-associative division algebras, Proc. Cambridge Philos. Soc.,46 (1950) 1–18.

[8] J. A. Green and D. Rees, On semi-groups in which xr=x, Proc. Cambridge Philos. Soc., 48 (1952) 35–40.

[9] D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc., 50 (1954) 145–158.

[10] D. G. Northcott and D. Rees, A note on reductions of ideals with an application to the generalised Hilbert function, Proc. Cambridge Philos. Soc., 50 (1954) 353–359.

[11] D. Rees, Valuations associated with a local ring I, Proc. London Math. Soc. (3), 5 (1955) 107–128.

[12] D. Rees, A note on valuations associated with a local domain, Proc. Cambridge Philos. Soc., 51 (1955) 252–253.

[13] D. Rees, A basis theorem for polynomial modules, Proc. Cambridge Philos. Soc., 52 (1956) 12–16.

[14] D. Rees, Two classical theorems of ideal theory, Proc. Cambridge Philos. Soc., 52 (1956) 155–157.

[15] D. Rees, Valuations associated with ideals, Proc. London Math. Soc. (3), 6 (1956) 161–174.

[16] D. Rees, Valuations associated with ideals II, J. London Math. Soc., 31 (1956) 221–228.

[17] D. Rees, Valuations associated with a local ring II, J. London Math. Soc., 31 (1956) 228–235.

[18] D. Rees, A theorem of homological algebra, Proc. Cambridge Philos. Soc., 52 (1956) 605–610.

[19] D. Rees, The grade of an ideal or module, Proc. Cambridge Philos. Soc., 53 (1957) 28–42.

[20] D. Rees, Filtrations as limits of valuations, J. London Math. Soc., 32 (1957) 97–102.

[21] D. Rees, A note on general ideals, J. London Math. Soc., 32 (1957) 181–186.

[22] D. G. Northcott and D. Rees, Extensions and simplifications of the theory or regular local rings, J. London Math. Soc., 32 (1957) 367–374.

[23] D. Rees, A note on form rings and ideals, Mathematika, 4 (1957) 51–60.

[24] D. Rees, Polar modules, Proc. Cambridge Philos. Soc., 53 (1957) 554–567.

[25] D. G. Northcott and D. Rees, Principal systems, Quart. J. Math. Oxford Ser. (2), 8 (1957) 119–127.

[26] D. Rees, On a problem of Zariski, Illinois J. Math., 2 (1958) 145–149.

[27] D. Rees, Réductions des idéaux et multiplicités dans les anneaux locaux, Séminaire DUBREIL-PISOT (Algèbre et Théorie des Nombres) 13e année, 1959/60, no. 8, 1960 6pp.

[28] D. Rees, a -transforms of local rings and a theorem on multiplicities of ideals, Proc. Cambridge Philos. Soc., 57 (1961) 8–17.

[29] D. Rees, Degree functions in local rings, Proc. Cambridge Philos. Soc., 57 (1961) 1–7.

[30] P. J. Hilton and D. Rees, Natural maps of extension functors and a theorem of R. G. Swan, Proc. Cambridge Philos. Soc., 57 (1961) 489–502.

[31] D. Rees, A note on analytically unramified local rings, J. London Math. Soc., 36 (1961) 24–28.

[32] D. Rees, Exchange and transformation algebras of multilinear forms, J. Nat. Sci. and Math., 1 (1961) 57–70.

[33] D. Rees, Local birational geometry, 1966 Proc. Internat. Colloq. Algebraic Geometry, Inst. Jorge Juan del C. S. I. C. -Internat. Math. Union, Madrid, (1965) 17–22.

[34] D. Rees, Degree functions in two-dimensional normal local domains, Symposia Mathematica, VIII, (Convegno sulle Algebre Associative, INDAM, Rome, 1970) Academic Press, London, (1972) 205–225.

[35] D. Rees and R. Y. Sharp, On a theorem of B. Teissier on multiplicities of ideals in local rings, J. London Math. Soc. (2), 18 (1978) 449–463.

[36] M. Boratyński, D. Eisenbud and D. Rees, On the number of generators of ideals in local Cohen- Macauley rings, J. Algebra, 57 (1979) 77–81.

[37] D. Rees, Absolute integral dependence on an ideal, Institut Mittag-Leffler, report no. 9 (1981) 12pp.

[38] D. Rees, Rings associated with ideals and analytic spread, Math. Proc. Cambridge Philos. Soc., 89 (1981) 423–432.

[39] D. Rees, Hilbert functions and pseudorational local rings of dimension two, J. London Math. Soc. (2), 24 (1981) 467–479.

[40] D. Rees, Multiplicities, Hilbert functions and degree functions, London Math. Soc. Lecture Note Ser., 72, Cambridge Uni-versity Press, Cambridge-New York, (1982) 170–178.

[41] D. Rees, Generalizations of reductions and mixed multiplicities, J. London Math. Soc. (2), 29 (1984) 397–414.

[42] D. Rees, A note on asymptotically unmixed ideals, Math. Proc. Cambridge Philos. Soc., 98 (1985) 33–35.

[43] D. Rees, Amao’s theorem and reduction criteria, J. London Math. Soc. (2), 32 (1985) 404–410.

[44] D. Rees, The general extension of a local ring and mixed multiplicities, Lecture Notes in Mathematics, Springer, Berlin, (1986) 339–360.

[45] D. Rees, Reduction of modules, Math. Proc. Cambridge Philos. Soc., 101 (1987) 431–449.

[46] D. Rees, Semi-Noether filtrations I, J. London Math. Soc. (2), 37 (1988) 43–62.

[47] D. Rees and J. D. Sally, General elements and joint reductions, Michigan Math. J., 35 (1988) 241–254.

[48] D. Rees, Lectures on the asymptotic theory of ideals, London Mathematical Society Lecture Note Series, 113, Cambridge University Press, 1988.

[49] D. Rees, Izumi’s theorem, Math. Sci. Res. Inst. Publ., 15, Springer, New York, (1989) 407–416.

[50] D. Kirby and D. Rees, Multiplicities in graded rings I, The general theory, Contemp. Math., 159, Amer. Math. Soc., Provi-dence, RI, (1994) 209–267.

[51] D. Kirby and D. Rees, Multiplicities in graded rings II. Integral equivalence and the Buchsbaum-Rim multiplicity, Math.Proc. Cambridge Philos. Soc., 119 (1996) 425–445.

[52] D. Kirby and D. Rees, The multiplicity of a set of homogeneous polynomials over a commutative ring, Math. Proc. Cam-bridge Philos. Soc., 124 (1998) 97–105.